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Abstract

Species of Chlamydia are the etiologic agent of endemic blinding trachoma,
the leading cause of bacterial sexually transmitted diseases, significant respi-
ratory pathogens, and a zoonotic threat. Their dependence on an intracel-
lular growth niche and their peculiar developmental cycle are major chal-
lenges to elucidating their biology and virulence traits. The last decade has
seen tremendous advances in our ability to perform a molecular genetic
analysis of Chlamydia species. Major achievements include the generation of
large collections of mutant strains, now available for forward- and reverse-
genetic applications, and the introduction of a system for plasmid-based
transformation enabling complementation of mutations; expression of for-
eign, modified, or reporter genes; and even targeted gene disruptions. This
review summarizes the current status of the molecular genetic toolbox for
Chlamydia species and highlights new insights into their biology and new
challenges in the nascent field of Chlamydia genetics.
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INTRODUCTION

Chlamydiae are a remarkably diverse phylum of obligate intracellular bacteria that encompass sym-
bionts of unicellular eukaryotes and parasites of invertebrates along with significant pathogens of
humans and livestock (53). The species with the greatest impact on human health is Chlamydia tra-
chomatis, which causes primarily ocular infections (serotypes A–C) and sexually transmitted diseases
(serotypes D–K, L1–L3). Ocular infections can lead to trachoma, a major cause of preventable
blindness in developing areas of the world (130, 145). Urogenital infections with C. trachomatis
are a global health burden and may result in lymphogranuloma venereum, adverse pregnancy out-
comes, and/or infertility (88, 144). The second-most significant chlamydial pathogen, Chlamydia
pneumoniae, is mainly considered an agent of respiratory disease; yet, it may also be associated
with atherosclerosis and neurological diseases (18). Other species of the genus Chlamydia, such
as C. psittaci, are known to infect primarily animals but can cause severe zoonotic infections in
humans (75). The ecologic and pathogenic roles of chlamydial species outside the genus Chlamydia
are not well understood.

Development of new means to treat and prevent Chlamydia diseases requires a better
understanding of the biology of the pathogen and its strategies to invade and replicate within
human host cells, to evade host immune responses, and to induce pathology. The lack of tools for
molecular genetic manipulation of chlamydiae has been a great impediment for investigators who
had to rely on surrogate systems and inferences based on similarities between chlamydial proteins
and virulence factors previously characterized in other pathogenic bacteria. This Chlamydia
research landscape has radically changed in the last couple of years, with a greatly expanded
molecular genetic toolbox becoming available for research on C. trachomatis. This paves the
way for exciting discoveries and critical reassessment of established concepts. In this review
we summarize major factors that contribute(d) to the genetic recalcitrance of Chlamydia spp.,
currently established genetic tools and experimental approaches, and recent applications and
their impact on our understanding of chlamydial biology and virulence. We conclude with a brief
survey of persisting challenges and future directions.

LIFE CYCLE OF A GENETICALLY RECALCITRANT PATHOGEN

The sequence of the first C. trachomatis genome (strain D/UW-3/CX) was published in 1998
(123). Numerous additional strains and related species were sequenced thereafter, which provided
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new insights into the coding potential of these pathogens and interstrain and interspecies genetic
variability (5, 20, 37, 65, 85, 109, 110, 132, 133, 135). Genomic analysis revealed a remarkable
reduction of metabolic capacities in Chlamydia spp. and the presence of proteins with similarities
to virulence factors in other bacteria, yet it also underscored the large number of Chlamydia-
specific genes coding for proteins of completely unknown function (5, 20, 37, 65, 85, 109, 110,
132, 133, 135). Unfortunately, the functional analysis of these proteins has been limited by the lack
of tools for molecular genetic manipulation. A major barrier to the development and application
of genetic tools is the peculiar life cycle of the pathogen, in particular its dependence on a host cell
for replication and development. For instance, although C. trachomatis can maintain some degree
of metabolic activity under host cell–free conditions (99), a medium allowing axenic replication of
chlamydiae has yet to be developed. An ability to cultivate bacteria in liquid broth or on agar plates
can greatly facilitate application of molecular genetic techniques, as is well exemplified by the case
of Coxiella burnetii, a bacterium that until recently had been considered an obligate intracellular
pathogen (97, 98).

Chlamydia spp. alternate between two morphologically, biochemically, and functionally distinct
developmental stages: the infectious elementary body (EB) and the replicative reticulate body (RB)
(1). EBs invade host cells and differentiate into RBs that subsequently replicate within the confines
of a membrane-bound compartment (termed inclusion). Eventually, RBs differentiate back into
EBs that are released by host cell lysis or by extrusion of intact inclusions to infect neighboring
cells (1, 57) (Figure 1). During the course of infection, Chlamydia spp. actively remodel their
growth niche by means of effector proteins that are secreted into the host cell cytosol or are
inserted into the inclusion membrane (inclusion membrane proteins) (13). Genetic manipulation

e

a

b

c

d

Elementary body (infective stage)

Reticulate body (replicative stage) 

Figure 1
The developmental cycle of Chlamydia spp. Chlamydiae alternate between two distinct developmental stages,
the infectious elementary body (EB) and the replicative reticulate body (RB). After invasion of a host cell
(a), the EB resides within a membrane-enclosed compartment (termed “inclusion”) and differentiates to form
a noninfectious RB (b) that will replicate (c) and eventually form new infectious EBs (d ) that are released by
host cell lysis (e) or extrusion (not shown). The infection cycle can be of variable length depending on the
chlamydial species, yet is usually completed within about 40–48 hours in the case of C. trachomatis L2.
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of Chlamydia spp. may target either the EB or the RB stage. RBs are very labile in cell-free
environments and moreover considered to be noninfectious (129). However, inside the host cell,
RBs are not easily accessible to exogenous DNA, which would need to pass four membranes (host
plasma membrane, inclusion membrane, and bacterial outer and inner membranes) to reach the
bacterial cytosol. While it may seem more feasible to target the EB stage for DNA transformation,
this environmentally stable form has a very rigid cross-linked cell wall (50), a highly condensed
nucleoid (79), and reduced metabolic activity (100). Thus, EBs may be naturally less likely to take
up and integrate foreign DNA. Adding to the challenge, many chlamydial genes are differentially
expressed throughout the different phases of infection (3, 12, 56, 90), most likely through the
differential engagement of transcription factors, sigma factors, and changes in DNA topology (26,
71, 91, 112, 113, 149). While these regulatory systems may be exploited in the future for more
precise manipulations, it is important to consider that expression of foreign or modified genes in
Chlamydia may fail to produce the anticipated phenotype or may even disrupt chlamydial growth
if it is not in tune with chlamydial development.

NATURAL COMPETENCE

Despite these technical challenges, the discovery that C. trachomatis has a natural capacity for
DNA exchange was encouraging. First evidence for recombination among chlamydial strains
came from studies describing mosaic alleles of the ompA gene (encoding the major antigen used
for C. trachomatis serotyping) (17, 43, 51, 72, 81, 82, 148). Later, analysis of additional genetic
loci, multilocus sequencing typing, and eventually whole-genome sequencing approaches have
confirmed the occurrence of recombination events within and between serotypes of C. trachomatis
at positions throughout the chlamydial chromosome (8, 32, 45–47, 49, 59, 62–64, 102, 120). In
2007 DeMars et al. (34) established a system to study lateral gene transfer among C. trachoma-
tis in vitro. After coinfection of cells with two strains carrying different antibiotic resistances,
double-drug-resistant strains could be isolated about 104 times more frequently than generated
by spontaneous mutations (34). Subsequent studies demonstrated in vitro recombination between
different serotypes of C. trachomatis (33, 58) and transfer of a tetracycline resistance gene from the
swine pathogen C. suis to C. trachomatis (127).

The mechanism of this natural DNA exchange is unknown. While many Chlamydia strains
naturally harbor a 7.5-kb plasmid, an essential role of the Chlamydia plasmid in DNA transfer
is unlikely, given its nonintegrative and nonconjugative nature (111). Moreover, whereas bacte-
riophages have been discovered in some Chlamydia species (118), an essential role of phages for
recombination can also be ruled out, because the great majority of Chlamydia isolates are devoid
of phages. However, the discovery that Chlamydia spp. encode a homolog of the DNA-uptake
protein ComEC raises the possibility that chlamydiae are naturally competent (7). Thus, DNA
released from lysing RBs may be taken up by other RBs within the same host cell and may be
integrated into their genome via homologous recombination.

THE GENETIC TOOLBOX FOR CHLAMYDIA SPECIES

Efforts to develop a system for genetic analysis in Chlamydia spp. have focused primarily on
C. trachomatis and its relative C. muridarum, a natural mouse pathogen (31). The current molec-
ular genetic toolbox includes methods that follow two distinct strategies: (a) approaches that
begin with random mutagenesis followed by screening for mutants that either display a specific
phenotype of interest (forward genetics) or carry a specific genetic alteration (reverse genetics),
and (b) approaches that aim for targeted modification of the chlamydial chromosome or plasmid
(reverse genetics) (Figure 2).
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Mutagenesis-Based Approaches

Generation of Chlamydia mutant libraries. Random genetic alterations can be introduced into
microbial genomes by various methods, such as insertional transpositions, UV irradiation, and
exposure to DNA-damaging chemicals. Whereas transposon mutagenesis has been successfully
applied to other obligate intracellular bacteria (10, 41, 105), so far only chemical mutagenesis
has been applied to Chlamydia spp. to generate mutant libraries (67, 70, 89, 107). Mutagenesis
was performed by exposure of infected cells to either of the DNA alkylating compounds ethyl
methanesulfonate (EMS) or N-ethyl-N-nitrosourea (ENU), followed by plaque isolation of clonal
strains. Variable concentrations of mutagen have been applied to achieve either a maximum of
one mutation per genome—optimized for reverse genetic approaches that maximize the chance of
isolating mutants that are isogenic to the parental strain at all other loci (67)—or multiple mutations
per genome—optimized for forward genetic approaches to reduce the number of mutants that need
to be screened (70, 89). The genetic lesions caused by EMS (or ENU) are mostly point mutations
(116), which are unlikely to have significant polar effects on the expression of surrounding genes.
Nevertheless, they provide a broad spectrum of modifications, including disruption of genes, but
also generation of hypo- or hypermorphic alleles. The latter is of particularly great value for
analyzing essential genes.

Finding mutants with specific phenotypes. Mutant collections are an excellent resource for
forward genetic screens. Screening assays may be as simple as searching for mutants with al-
tered plaque morphologies (89) or as complex as a recently described high content imaging-based
screen for mutants that fail to assemble F-actin at the inclusion (70). Whole-genome sequencing
of recovered mutants may aid in the identification of the causative mutation, though additional
confirmation by complementation and/or by genetic linkage analysis may be required. The latter
approach is based on monitoring the linkage between phenotypes and point mutations among
recombinant strains generated by coinfecting host cells with the mutant strain and a strain that is
wild type at all positions that are altered in the mutant (89). Linkage analysis may be particularly
useful in cases in which the phenotype is due to altered gene expression or protein function, rather
than a complete loss of gene function. However, the analysis relies on an ability to select for recom-
binants. Nguyen & Valdivia (89) and later Kokes et al. (70) solved this constraint by performing
mutagenesis in a rifampin-resistant strain, enabling subsequent crosses with spectinomycin- or
trimethoprim-resistant variants. In this manner, granular plaque morphologies could be linked
to mutations in glgB (1,4-α-glucan branching enzyme) and gspE (ATPase required for type II
secretion) that resulted in intrainclusion accumulation of insoluble glycogen (89). Similarly, loss
of the ability to recruit actin could be linked to a nonsense mutation in inaC (inclusion membrane
protein for actin assembly) (70).

Finding mutants with specific genetic alterations. Mutant libraries also enable a targeted
characterization of specific genes, if mutants can be recovered. This strategy was used to study
several C. trachomatis virulence factors, such as TrpB (tryptophan synthase β chain) (67), PmpD
(polymorphic membrane protein D) (68), CPAF (Chlamydia proteasome-like activity factor) (16,
119, 147), TepP (translocated early phosphoprotein) (25), and HtrA (78), as well as the C. muri-
darum cytotoxins (107). Two different approaches have been applied to find specific mutants in
a large collection of strains: (a) CEL1 nuclease-based detection of mutations (67, 95, 107), and
(b) whole-genome sequencing (70). In the first approach the gene for which one wants to identify
mutant alleles is amplified by PCR from pools of mutant strains. PCR products are denatured,
slowly reannealed to enable heteroduplex formation, and digested with the nuclease CEL1 that
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only cleaves at sites of mismatches. The approach based on whole-genome sequencing, while more
costly, gives a comprehensive overview of every single mutation that is present in the library. It
thus eliminates the need for repeated gene-specific screening of the entire collection. Moreover,
with the ability to recover mutants with lesions in certain genes, Kokes et al. (70) gained additional
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insights into the biology of Chlamydia spp. by identifying certain biological processes (e.g., glyco-
gen metabolism and DNA repair mechanisms) as being expendable for bacterial viability in cell
culture. Although screening approaches can initially be carried out with pools of mutants, they
ultimately rely on sequencing of individual strains to determine the complete set of mutations
present.

Targeted Genetic Manipulation

Generation of shuttle vectors. Targeted genetic modification of Chlamydia spp. is currently
almost exclusively based on the introduction of plasmids. Shuttle vectors were constructed to
include the natural Chlamydia plasmid fused to the backbone of an Escherichia coli cloning vector
to introduce elements required for plasmid replication in E. coli and selection markers conferring
antibiotic resistance (2, 36, 66, 73, 121, 122, 128, 140, 143, 146). A single study reported the
use of a Saccharomyces cerevisiae–Chlamydia shuttle vector constructed to avoid introduction of an
antibiotic resistance gene into Chlamydia (44). An overview of currently available shuttle vectors
for Chlamydia spp. is given in Supplemental Table 1 (follow the Supplemental Materials link
from the Annual Reviews home page at http://www.annualreviews.org).

Transformation methods. In 1994, Tam et al. (128) reported the first successful, though tran-
sient, transformation of Chlamydia spp. In this study, they introduced plasmid DNA into C. tra-
chomatis EBs by electroporation. About 15 years later, Binet & Maurelli (14) used a similar approach
to transform C. psittaci EBs—the first example of successful allelic exchange in the genus Chlamydia.
Although electroporation conditions were similar in both studies, the authors reported variable
effects of electroporation on EB viability that may be explained by differences in the buffers used
(14). Interestingly, despite these encouraging early successes, electroporation has not emerged as
the method of choice for current transformation protocols in Chlamydia spp.

Wang et al. (140) described a CaCl2-based method for Chlamydia EB transformation in 2011.
This was the first report of a stable introduction of a shuttle vector into chlamydiae, which to-
gether with its ease of use has contributed to its widespread adoption. In the original protocol, EBs
were incubated with plasmid DNA in CaCl2 buffer for 30 min at room temperature. Subsequently
McCoy cells resuspended in CaCl2 buffer were added, followed by an additional incubation for

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 2
The genetic toolbox for Chlamydia spp. (a) Construction of mutant libraries for forward- and reverse-genetic applications:
Chlamydia-infected cells are exposed to a mutagenic chemical, followed by clonal isolation of the progeny. (b) Approaches to link
phenotypes to a specific genetic alteration. (Left) Linkage analysis exploits the natural competence of Chlamydia spp. [i.e., the formation
of recombinant strains during coinfection with mutant and wild-type bacteria]. Clonal recombinants are analyzed to identify mutations
that are coinherited with a phenotype of interest. (Middle) Shuttle vectors permit complementation of mutants in trans with the
wild-type gene, and (right) the use of group II intron– or homology-based gene disruption cassettes enables insertional inactivation or
allelic replacement of genes in wild-type bacteria. (c) Approaches to screening mutant libraries for strains with mutations in specific
genes: (Left) Whole-genome sequencing of pools of mutants gives a comprehensive overview of all mutations present in a collection of
mutants. (Right) Monitoring of DNA heteroduplexes after the gene of interest is PCR-amplified from pools of strains. PCR products
are denatured, slowly reannealed, and digested with the nuclease CEL1, which cleaves at sites of mismatches (indicative of the presence
of a mutant in the pool). The smaller fragments generated by CEL1 digestion are detectable by agarose gel electrophoresis.
(d ) Expression of reporter genes in Chlamydia spp. facilitates analysis of infection and functional characterization of virulence factors.
(Top left) Expression of fluorescent proteins facilitates assays for adhesion, entry, and analysis of infection in live cells. (Top right)
Expression of luciferase enables in vivo monitoring of infection. (Bottom left) Expression of tagged proteins facilitates the analysis of
protein localization during infection and (bottom right) enables analysis of protein interactions, such as via immunoprecipitation of
tagged proteins from lysates of infected cells. Abbreviations: CyaA, adenylate cyclase; GSK, glycogen synthase kinase.
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20 min at room temperature, seeding of cells, and, optionally, centrifugation to enhance infection
(140, 141). The protocol was adapted by other groups with minor variations (e.g., 2, 9, 25, 48, 121,
146). Incubation of host cells in CaCl2 buffer was later shown to be nonessential (121). Transfor-
mation efficiencies have not been calculated for either CaCl2 transformation or electroporation
and the effect of the incubation in CaCl2 buffer on EB viability has not been assessed, making
direct comparison between these transformation methods difficult.

While electroporation and CaCl2 transformation facilitate DNA uptake into EBs, RBs repli-
cating within their host cell have been targeted for transformation with dendrimer-based ap-
proaches. Polyamidoamine dendrimers are noncytotoxic, highly branched polymers that can de-
liver biomolecules into cells (38). Initial studies by Mishra et al. (84) indicated that dendrimers accu-
mulate in C. trachomatis inclusions. Subsequently dendrimers were used to transform C. trachoma-
tis with an E. coli—C. trachomatis shuttle vector (66). Dendrimers complexed with plasmid DNA
were added to cells 16 h after infection. Plasmid replication and expression of plasmid-encoded
open reading frames (ORFs) were detected within the same infection cycle (66). Plasmid-driven
green fluorescent protein (GFP) expression indicated that 80% of the inclusions in the initially
transfected cell culture were transformed even in the absence of antibiotic selection (66). A sim-
ilar approach was applied to transform a naturally plasmid-free strain of C. pneumoniae with an
S. cerevisiae—C. trachomatis shuttle vector (44). Moreover, dendrimers also enabled the delivery
of antisense oligonucleotides into C. trachomatis RBs, which was reported to cause an efficient
though short-lived downregulation of the expression of targeted genes (83). Despite the reported
high transformation efficiency—which may result from a higher degree of natural competence
in RBs compared to EBs—the dendrimer-based transformation method has not been broadly
adopted.

Selection. Dendrimer-based transformation may be efficient enough to enable recovery of trans-
formed clonal isolates by plaque isolation in the absence of antibiotic selection. In contrast, trans-
formation efficiencies achieved by electroporation or CaCl2 transformation are low and require
antibiotic selection to enrich for transformants. Selection usually occurs through several in vitro
passages with increasing drug concentrations, whereby the antibiotic is initially added 7–24 h
after infection (6, 14, 36, 48, 60, 73, 86, 128, 146) or even after an initial round of infection in
the absence of antibiotics (2, 9, 121, 140). However, it is also possible to select rare transfor-
mants directly in the plaque assay without prior enrichment, as reported by Binet & Maurelli
(14). An optimal drug for selection should (a) be stable in the medium for prolonged periods of
time, (b) be nontoxic for host cells at a concentration that effectively blocks chlamydial growth,
(c) penetrate into the inclusion, and (d ) produce no or only infrequent spontaneously resistant
clones. The resistance marker most often used for selection of transformed Chlamydia spp. is the
β-lactamase gene. Although β-lactam antibiotics are very efficient for selection of transformed
C. trachomatis L2 (140), the guidelines of the U.S. National Institutes of Health (NIH) prohibit
their use as selectable markers for non-LGV urogenital C. trachomatis (serotypes D–K) because
of their therapeutic use in pregnant women infected with those strains (146). Other resistance
markers have been successfully tested, including chloramphenicol acetyltransferase (128, 146),
aminoglycoside 3′ adenyltransferase (76), and blasticidin S deaminase (36); the latter may be of
limited use owing to the strong cytotoxicity of blasticidin toward host cells.

Stability of transformed Chlamydia spp. E. coli—C. trachomatis shuttle vectors generated by
Wang et al. (140) in 2011 and by other researchers thereafter are maintained by clonally isolated
transformants over numerous passages and even in the absence of continued antibiotic selection
(2, 143). The endogenous plasmid is lost during transformation and replaced by the shuttle vector
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owing to plasmid incompatibility (2, 9, 140). Some investigators prefer to use plasmid-free strains
of chlamydiae as recipients (36, 146), which may potentially enhance transformation efficiencies
by avoiding plasmid competition. The copy number of plasmids introduced into C. trachomatis was
reported to be similar to that of the original plasmid (140, 141), though studies with transformed
C. muridarum reported an increased copy number (73, 74).

To define the function of plasmid-encoded genes, several modified shuttle vectors (both for
C. trachomatis and for C. muridarum) that contain deletions of individual plasmid ORFs have
been generated. These studies collectively showed that stable transformants cannot be obtained
when CDS2 ( pgp8), CDS3 ( pgp1), CDS4 ( pgp2), or CDS8 ( pgp6) are deleted, leading the authors
to conclude that these ORFs are likely essential for plasmid maintenance (48, 73, 121). Gene
disruption by point mutations further showed that it may be the CDS2 coding sequence, not
the encoded protein, that is essential, pointing to a role for the noncoding RNA encoded in this
region (48). Together, these observations may explain why the first transformation of chlamydiae,
reported by Tam et al. (128) in 1994, was only transient; CDS3 was likely disrupted in the shuttle
vector used in this study.

Plasmid tropism. While shuttle vectors containing the C. trachomatis E:SW2 backbone could
be transformed into C. trachomatis serotypes L2, D, and F (2, 36, 138, 140, 146), Song et al.
reported that transformation of plasmid-free strains of C. trachomatis serotype A or of C. muri-
darum was only possible when the shuttle vector contained the backbone of the plasmid naturally
found in those strains (122). This phenomenon was termed “plasmid tropism” (122). Interestingly,
Wang et al. described a successful transformation of C. muridarum with the C. trachomatis shuttle
vector pGFP::SW2 (139). Recovery of the plasmid from transformed chlamydiae revealed that
pGFP::SW2 had recombined with the endogenous C. muridarum plasmid to form a hybrid plas-
mid (termed pSW2NiggCDS2) that was similar to the original shuttle vector yet contained the
entire CDS2 from the natural C. muridarum plasmid (139). The authors thus suggested that CDS2
may be a major determinant of plasmid tropism, though the observation that pSW2NiggCDS2
was occasionally lost from C. muridarum indicates that other factors may contribute as well (139).
Interestingly, Gérard et al. reported that a shuttle vector based on the C. trachomatis L2 plasmid
was maintained for up to 5 passages in a human pathogenic strain of C. pneumoniae, suggesting
that stable transformation of these naturally plasmid-free bacteria may be possible (44).

Promoters for heterologous gene expression. Early studies demonstrating expression of for-
eign genes in chlamydiae made use of promoters driving constitutive expression, such as standard
promoters used in E. coli cloning vectors (140), the promoter from the Neisseria meningitidis porA
gene (140), or the promoter of the C. trachomatis incD gene (2). In contrast, for reintroduction of
original or modified genes into mutant strains, researchers preferentially chose to express genes
under control of a promoter identical to the promoter of the endogenous gene, reasoning that
this may help to maintain the gene’s developmental specific regulation (25, 70). Of special note in
this context is the introduction of a system for inducible gene expression in Chlamydia spp. that
enables modulating the timing of transcription and may in some circumstances also help to avoid
toxicity. The system was first described by Wickstrum and colleagues (143) and was subsequently
applied by several researchers (6, 131, 142).

Stable genetic modifications of the chlamydial chromosome. Successful gene replacement
in Chlamydia spp. by allelic exchange was reported as early as 2009 (14). In this study Binet &
Maurelli constructed a plasmid harboring parts of the C. psittaci rRNA operon that differed from the
endogenous operon at four single-nucleotide positions. Two mutations caused kasugamycin and
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spectinomycin resistance, respectively, one mutation caused loss of a restriction site, and the fourth
mutation was silent. After transformation in C. psittaci, double-resistant clones were obtained
that had also coinherited the other mutations, consistent with the notion that the introduced
rRNA operon had replaced the endogenous genes on the bacterial chromosome (14). Direct
isolation of these recombinants in a plaque assay also enabled these investigators to optimize
various experimental conditions. Recovery of recombinants was improved by the use of high
amounts of circular, nonmethylated DNA during transformation, whereas the recombination
frequency dropped when the length of flanking regions with strict homology to the target sequence
was reduced to below 2 kb (14).

Despite this success, the first targeted disruption of a gene on the Chlamydia chromosome,
described by Johnson & Fisher (60) in 2013, was not based on the principle of allelic exchange.
Instead, the authors adapted the TargeTron system (Sigma-Aldrich), which is based on a modified
group II intron that can be retargeted to integrate into the chromosome at a specific site. Using a
vector that contains a promoter sequence functional in Chlamydia spp. and a β-lactamase gene in
the intron, Johnson & Fisher generated a C. trachomatis L2 strain harboring an insertional inac-
tivation of the incA gene, thereby confirming the functionality of the system and the role of IncA
in mediating inclusion fusion (60). A modified system using a marker conferring spectinomycin
resistance was later used to disrupt the rsbV1 gene in C. trachomatis L2 (131) and to generate
an incA rsbV1 double-knockout strain (76). Insertional gene disruption was stable during in vivo
passage in the mouse in absence of antibiotics (76). A major limitation of the system is that only a
restricted number of positions within a gene can be targeted for intron insertion. Intron insertions
may also have polar effects on the expression of neighboring genes.

More recently, Mueller et al. (87) developed a system for fluorescence-reported allelic exchange
mutagenesis (FRAEM) in C. trachomatis, allowing replacement of chromosomally encoded genes
with a genetic cassette containing an antibiotic resistance gene and encoding a fluorescent marker.
Key to this accomplishment was the generation of a conditionally replicating vector for C. tra-
chomatis, which was achieved by placing the plasmid CDS8 ( pgp6), and thus plasmid maintenance,
under the control of a Tet-inducible promoter (87). Removal of the inducer, while selecting for an
antibiotic resistance cassette flanked by Chlamydia sequences on the plasmid, enables the isolation
of strains arising from rare allelic exchange events wherein the chromosomal locus is replaced by
the version contained in the plasmid.

APPLICATIONS OF CHLAMYDIA GENETICS

Revisiting the Role of the Chlamydia Plasmid in Virulence

The methods described above provided the genetic tools to ultimately prove (or disprove) the con-
tribution of a specific bacterial gene to a virulence trait according to molecular Koch’s postulates
(39). This was first demonstrated by studies revisiting the role of the Chlamydia plasmid. Plasmid-
free strains of C. trachomatis or C. muridarum can occasionally be isolated (40, 80, 103, 124) or can
be generated by novobiocin treatment (23, 94). Those strains differ from plasmid-bearing strains
because of (a) a lack of intrainclusion glycogen accumulation, (b) reduced bacterial movement
in inclusions, (c) altered inclusion morphology, and (d ) reduced expression of several bacterial
chromosome-encoded genes (termed plasmid-dependent genes) (21, 80, 92–94). Plasmid-free
strains have been variably reported to have no, minor, or significant growth or plaque-forming
defects in vitro (21, 80, 92–94, 114, 147) and are significantly attenuated in vivo in the murine
urogenital infection model (21, 93). While the reintroduction of the complete chlamydial plasmid
(as part of a shuttle vector) into plasmid-free strains restored normal gene expression, glycogen
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accumulation, and inclusion morphology (44, 73, 140, 141), plasmids deficient for CDS6 (pgp4)
failed to restore these phenotypes, which led to the identification of Pgp4 as the transcriptional
activator of plasmid-dependent genes (44, 48, 121, 138). Pgp5, in contrast, was proposed to act
as transcriptional suppressor of the same set of genes, at least in C. muridarum (73). Recently,
Pgp4 was proposed to regulate Chlamydia spp. exit from host cells, potentially explaining defects
in plaque formation observed in plasmid-free strains (147). The reintroduction of the plasmid
also restored Chlamydia virulence, and plasmid-encoded Pgp3, Pgp4, and Pgp5 were shown to be
important contributors to disease pathology in mice (55, 74, 108).

The reduced virulence of plasmid-free strains prompted several investigators to study their
potential use as a live attenuated Chlamydia vaccine (69, 93, 96, 106). While variable success was
reported, our new understanding of the role of individual plasmid-encoded genes, as well as our
ability to introduce modified plasmids, may enable the generation of strains with improved ability
to induce protective immunity. The identification of the Chlamydia plasmid as a virulence factor,
however, also has implications for the design and application of Chlamydia shuttle vectors, as these
vectors are known to replace the endogenous plasmid (2, 9, 140). Moreover, it has been reported
occasionally that shuttle vectors can be maintained at increased copy numbers (73, 74) and that
changes in plasmid size or sequence, such as caused by deletion of single ORFs, can affect the
expression of other plasmid-encoded ORFs (73). Further studies are needed to explore whether
these effects have consequences on virulence and how they can be avoided during vector design.

Validation of Chlamydia Virulence Factors

The need for molecular validation of the contribution of a bacterial gene to a virulence trait is
best exemplified by the case of the Chlamydia-secreted protease CPAF (151). Based on CPAF’s
ability to cleave a diverse set of host cell proteins in vitro and detection of cleavage products
in host cell lysates (150), CPAF has been implicated in the modulation of multiple host cell
functions, including resistance to apoptosis (104), Golgi fragmentation (28), and inhibition of
NFκB activation (27). The discovery that a significant amount of host protein proteolysis occurs
during sample preparation (22, 61) indicated that the role of the protease during infection needed
to be reassessed. By characterizing CPAF-deficient C. trachomatis mutants, Snavely and colleagues
provided compelling evidence that CPAF is not essential for modulating the aforementioned host
cell functions, though the protein still appeared to be important for chlamydial growth (119).
Further analysis of these mutants by other groups confirmed that CPAF is dispensable for Golgi
fragmentation (35) and suggested that CPAF may contribute to genomic instability in host cells
(16) and Chlamydia exit by host cell lysis (147).

Plasmid-based trans complementation of mutant phenotypes was first applied for the analysis
of the effector proteins TepP and InaC, confirming their role in recruiting specific host pro-
teins during infection and establishing a role of InaC in mediating Golgi fragmentation (25, 70).
Recruitment of host Arf GTPases and 14-3-3 proteins was enhanced during infection with a
complemented InaC mutant, suggesting that gene dosage effects associated with trans comple-
mentation may under some circumstances also aid in deciphering protein function (70). Likewise
overexpression helped Thompson and coworkers (131) to establish the role of RbsW and RbsV1
as components of a phosphoregulatory network that regulates expression of housekeeping genes
and bacterial growth in C. trachomatis.

Studying Protein Localization and Interactions

Chlamydia-secreted effector proteins constitute an important set of virulence factors. Traditionally
these proteins were identified by (a) in silico predictions (4, 54, 115), (b) their interaction with
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known T3S chaperones (25, 42, 101), (c) their appearance in cytosolic 2D protein maps of infected
cells (52, 117, 134), (d ) their secretion in heterologous T3S systems (e.g., 30, 125, 126), and (e)
analysis of subcellular localization by immunostaining and/or cell fractionation (e.g., 29, 77, 151).
The ability to express epitope-tagged variants of candidate effector proteins eliminates the need
for effector-specific antibodies and enabled the confirmation of secretion of CPAF and demonstra-
tion of secretion and inclusion membrane localization of several known and candidate inclusion
membrane proteins (9, 142). Moreover, glycogen synthase kinase and adenylate cyclase tags were
applied to confirm direct exposure of secreted proteins to the host cell cytosol (9). To enhance
sensitivity and to enable monitoring of protein secretion in live cells, Mueller & Fields adapted
a β-lactamase reporter system for application in C. trachomatis (86). Finally, expression of tagged
bacterial proteins also facilitates the identification of interacting proteins, as has been recently
applied to infer that C. trachomatis CT398 (CdsZ) may interact with and regulate components of
T3S and transcription (6).

Application of Reporter Genes

The expression of fluorescent proteins, initially applied as a proof of principle for stable expression
of foreign proteins in Chlamydia spp. (2, 136, 140, 143), has been developed into a tool to facilitate
not only estimation of transformation success and plasmid stability (2, 36, 44, 66, 140, 146) but
also assays for bacterial adhesion and invasion, monitoring of chlamydial infection during live cell
microscopy, and direct flow cytometric enumeration of bacterial particles (2, 136). The technology
was also proposed to have the potential to revolutionize high-throughput drug screens (136).
A redox-sensitive variant of GFP was applied to monitor the oxidation state of the Chlamydia
cytosol during the course of the developmental cycle (137). Finally, a luciferase-expressing strain
of C. muridarum has been generated, allowing us for the first time to monitor the course of
chlamydial upper genital tract infection in live mice (19).

FUTURE PERSPECTIVES

The last five years have seen tremendous advances in our ability to perform molecular genetic
analyses of Chlamydia spp. These new techniques have not only greatly extended our ability to
study the function and molecular interactions of Chlamydia proteins, but also for the first time
enabled us to prove whether a specific bacterial gene is associated with a specific virulence trait.
Indeed, we now have the capacity to remove and reintroduce specific genes into Chlamydia spp.
to fulfill molecular Koch’s postulates, a procedure that should be the gold standard for any future
analysis of a Chlamydia virulence factor. To complement the genetic toolbox for Chlamydia spp.
and to eliminate the risk of unpredictable virulence attenuation resulting from manipulation of
the endogenous plasmid, future developments need to focus on advancing our capacity to intro-
duce genetic modifications directly into the chlamydial chromosome. Of major interest will be
systems that enable gene disruption in a non-site-restricted manner, in cis complementation of
mutations with single gene copies to avoid the gene dosage effects associated with plasmid-based
complementation, and replacement of endogenous genes and regulatory elements with modified
versions to study gene function. The recent design of a suicide plasmid for C. trachomatis and its
successful application for allelic exchange (87) is an encouraging development. While this system
clearly has great potential for further refinement, alternative approaches, such as those making use
of heterologous site-specific recombinases, have been successfully applied to Coxiella burnetii (11)
and may be applicable to Chlamydia spp. as well. Further advancements of systems for molecular
genetic manipulation in Chlamydia spp. may also require further improvements of transformation
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efficiencies, which may be aided by a better understanding of the mechanisms of DNA uptake
and recombination in Chlamydia spp. Moreover, an expansion of the molecular genetic toolkit
to other previously untapped chlamydial strains and species, including environmental chlamydiae
and those of veterinary importance, will require additional methodological adaptations and de-
velopment of new tools. Finally, although this genetic system marks the beginning of a new era
in Chlamydia research, it also introduces new challenges requiring caution: careful selection of
adequate controls, establishing infrastructure for stock keeping and sharing strains, and develop-
ing efficient measures to prevent spread of antibiotic resistance or new virulence traits from the
laboratory to clinically relevant strains. Investigators also need to be aware of the risk of extended
passage of Chlamydia spp. in cell culture leading to inactivation or downregulation of virulence
factors required for infections in vivo (15, 24). Appropriate selection of parental strains is there-
fore critical, as is accurate confirmation that only the expected modifications occur in the strains
produced.
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