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SUMMARY

Pathogens have been a strong driving force for
natural selection. Therefore, understanding how hu-
man genetic differences impact infection-related
cellular traits can mechanistically link genetic varia-
tion to disease susceptibility. Here we report the
Hi-HOST Phenome Project (H2P2): a catalog of
cellular genome-wide association studies (GWAS)
comprising 79 infection-related phenotypes in
response to 8 pathogens in 528 lymphoblastoid cell
lines. Seventeen loci surpass genome-wide signifi-
cance for infection-associated phenotypes ranging
from pathogen replication to cytokine production.
We combined H2P2 with clinical association data
from patients to identify a SNP near CXCL10 as a
risk factor for inflammatory bowel disease. A SNP
in the transcriptional repressor ZBTB20 demon-
strated pleiotropy, likely through suppression of
multiple target genes, and was associated with viral
hepatitis. These data are available on a web portal
to facilitate interpreting human genome variation
through the lens of cell biology and should serve as
a rich resource for the research community.

INTRODUCTION

The human genome has been shaped by migration, drift, admix-

ture, and natural selection (Cavalli-Sforza et al., 1994; Li et al.,

2008). One of the strongest driving forces in natural selection

has been pathogens (Fumagalli et al., 2011), as first exemplified

with A.C. Allison’s demonstration that sickle cell allele (rs334)
308 Cell Host & Microbe 24, 308–323, August 8, 2018 ª 2018 Elsevie
confers resistance to malaria (Allison, 1954). Red blood cells

from individuals with this allele are resistant to Plasmodium

infection (Friedman, 1978). Similarly, human resistance to HIV in-

fections afforded by the CCR5D32 allele can also be seen at the

level of individual T cells (Liu et al., 1996). Therefore, understand-

ing how human genetic differences impact cellular traits can

mechanistically link human genetic variation to disease

susceptibility.

Key to delineating such causal links have been studies exam-

ining molecular traits, such as gene expression, in human popu-

lations. Expression quantitative trait loci (eQTL) studies in

lymphoblastoid cell lines (LCLs) defined abundant associations

between human SNPs and expression of nearby genes (Nica

and Dermitzakis, 2013; Stranger et al., 2007). LCLs are

Epstein-Barr virus (EBV)-transformed B cells that are transcrip-

tionally similar to antigen-activated primary B cells (Cahir-

McFarland et al., 2004). LCLs serve as a standardized resource

for functional human genetic variation studies, as they have been

densely genotyped (1000 Genomes Project Consortium et al.,

2010; International HapMap Consortium, 2005). As eQTLs are

often shared across tissues (e.g., 88% of cis-eQTLs are shared

among LCLs, fibroblasts, and primary T cells [Flutre et al.,

2013]), LCL eQTL studies have led to important insights not

only in immunity-related diseases but also for disorders where

B cells are not believed to be primary drivers of disease (Nica

and Dermitzakis, 2013).

Using LCLs, we developed Hi-HOST (high-throughput human

in vitro susceptibility testing) to identify human genetic differ-

ences in pathogen-induced cellular traits, serving as a cell bio-

logical link between eQTL studies and GWAS of disease (Ko

et al., 2009). Hi-HOST uses live pathogens to examine variation

in innate immune recognition, but also in pathogen-manipulated

cell biological processes that can be quantified as phenotypes

for genome-wide association. This work therefore builds on a

long tradition of using cellular microbiology to elucidate basic
r Inc.
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cell biology (Cossart et al., 1996) and expands that utility to

interpret the human genome. Using Hi-HOST, we leveraged

LCL responses to Salmonella enterica to demonstrate that ge-

netic variation in the methionine salvage pathway regulates py-

roptosis and human susceptibility to sepsis (Ko et al., 2012;

Wang et al., 2017). Similarly, we recently reported that a genetic

variant in VAC14 is associated with both increased S. Typhi inva-

sion into LCLs and risk of typhoid fever in a Vietnamese popula-

tion (Alvarez et al., 2017).

Here, we present the Hi-HOST Phenome Project (H2P2) to

explore the genetic basis of cellular outcomes in response to

infectious agents. Using 7 microbes and 1 bacterial toxin, we

carried out GWAS of 79 host-pathogen phenotypes that serve

as cellular readouts for processes such as endocytosis, endo-

somal trafficking, signal transduction, cell death, and tran-

scriptional regulation. We integrated H2P2 data with experi-

mental validation and disease association data from the

eMERGE Network PheWAS pipeline (Denny et al., 2013) to

define functions for genes in disease and provide clues to

pathophysiology.

RESULTS

Phenotypic Variation in H2P2 Traits Reveals Biologically
Meaningful Clusters
We measured variation in cellular traits in 528 LCLs stimulated

with 7 different microbes and 1 bacterial toxin (Figure 1A).

LCLs were from 4 human populations and consisted of parent-

offspring trios, allowing for heritability estimation and for

GWAS analysis with protection from stratification through fam-

ily-based methods (Purcell et al., 2005, 2007).

The microbes and toxin we selected affect billions of people.

Non-typhoidal Salmonella infections caused 150 million diar-

rheal illnesses and 0.6 million cases of invasive enteric disease

in 2010 (Kirk et al., 2015). Approximately 20 million cases of

typhoid fever are caused by S. Typhi every year (Dougan and

Baker, 2014). Chlamydia trachomatis causes 100 million cases

of genital tract infection every year (Newman et al., 2015), and

1.3 million people are blind due to ocular infection (Burton and

Mabey, 2009). Staphylococcus aureus is a common cause of

skin and soft tissue infections, bacteremia, and infective endo-

carditis, and its alpha toxin, utilized in H2P2, is a key virulence

determinant (Tong et al., 2015). Candida albicans is a frequent

cause of genitourinary tract infection that can causemore severe

disease in immunocompromised individuals (Yapar, 2014).

Mucor circinelloides is another fungal species that causes se-

vere infections in immunocompromised individuals (Mendoza

et al., 2014). Finally, over 6 billion people have been infected
Figure 1. Inter-individual Variation in H2P2 Traits Revealed Clusterin

Infection

(A) Diagram of H2P2 workflow for connecting genetic variation to cell biology.

(B) Hierarchical clustering of H2P2 phenotypes revealed a map of trait similarity

notypes are color-coded by stimuli (outer band) and biological category (inner b

(C) Narrow-sense heritability (h2) estimates for H2P2 phenotypes based on the Zait

provided a SNP-based h2 (green) as well as a total h2 (yellow) (the sum of SNP-b

(D) h2 estimates from parent-offspring regression versus GREML SNP-based h2

intervals.

See also Tables S1, S2, and S3; Figures S1–S3; Data S1 and S2.

310 Cell Host & Microbe 24, 308–323, August 8, 2018
with the protozoal pathogen Toxoplasma gondii, which can be

fatal in infants and immunocompromised individuals (Furtado

et al., 2011). Thus the microbes and toxin used in H2P2 are

important causes of human disease.

The pathogens selected also exploit a wide range of host

cellular processes to either kill the host cell or to create replica-

tive niches within them. With H2P2, LCLs are used as a general

cellular model for host-pathogen traits. For example, invasion

into LCLs requires the same type III secretion system (T3SS)

and secreted effectors that are utilized in invasion of epithelial

cells (Alvarez et al., 2017). Traits were selected for screening

based on pilot experiments and phenotype optimization in 7

LCLs measured by flow cytometry and a Luminex panel of 41

cytokines. C. trachomatis, S. enterica serovar Typhi, serovar

Typhimurium (wild-type and DsifA mutant, which escapes

from the pathogen-containing vacuole at a greater rate into

the cytosol [Beuzon et al., 2000]), and T. gondii are intracellular

pathogens that employ diverse lifestyles. These microbes were

engineered to express GFP to allow quantitation of pathogen

invasion, survival and replication, intercellular spread, and con-

current measurement of cell death by flow cytometry. Cell

death was also measured as the readout for S. aureus alpha

toxin. Microbes were also tested for induction or suppression

of cytokines. S. Typhimurium and C. trachomatis-infected

cells were screened for 3 and 17 cytokines, respectively.

M. circinelloides and C. albicans were included for their ability

to induce fibroblast growth factor 2 (Lee et al., 2015). Defini-

tions, histograms, and a graphical breakdown for all pheno-

types are provided (Table S1; Data S1; Figure S1). Importantly,

76 of 79 H2P2 phenotypes showed significant experimental

repeatability based on measurements on LCLs from three

different passages (Figure S2).

Hierarchical clustering of traits based on inter-individual varia-

tion confirmed robustness of our measurements (Figure 1B).

Levels of three cytokines (CXCL10 [also known as IP-10], inter-

leukin-10 [IL-10], and macrophage-derived cytokine [MDC])

measured in uninfected cells with two different methods (ELISA

at 24 hr and Luminex at 70 hr) showed strong correlation

(R = 0.78 for CXCL10, R = 0.46 for IL-10, R = 0.90 for MDC).

The clustering of responses to Salmonella infection is consistent

with previous findings: S. Typhimurium, Typhi, and Typhimurium

DsifA cluster for the phenotype of invasion, as all utilize a similar

T3SS for entry (Collazo and Galan, 1997) (correlation to S. Typhi-

murium, R = 0.69 for S. Typhi and R = 0.90 for S. Typhimurium

DsifA). The correlation is weaker for intracellular survival and

replication phenotypes (correlation to S. Typhimurium replica-

tion, R = 0.36 for S. Typhi and R = 0.34 for S. TyphimuriumDsifA),

reflecting the different replications niches for DsifA (host cell
g of Phenotypes and Heritable Variation in Cellular Responses to

based on inter-individual phenotypic variation (Spearman correlation). Phe-

and).

lenmethod of GREML versus parent-offspring regression. TheGREMLmethod

ased h2 [green] plus the non-SNP-based h2).

were well correlated for H2P2 traits. Gray shading indicates 95% confidence
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cytoplasm) and wild-type Typhimurium (membrane bound vacu-

ole) (Beuzon et al., 2000) or the use of a different repertoire of ef-

fectors byS. Typhi (Parkhill et al., 2001). In contrast, we observed

almost no correlation between EBV copy number (from Man-

dage et al. (2017) for 284 LCLs also used in H2P2) and H2P2

traits (Figure S3; Table S2), indicating these phenotypes are

not being driven by the LCL immortalization method. Thus, clus-

tering based on phenotypic diversity verified reliability of mea-

surements and confirmed biological relatedness established by

much previous work.

H2P2 Traits Are Heritable
To estimate contributions of genetic differences to phenotypic

variance, we measured narrow-sense heritability (h2) with two

complementary methods: parent-offspring regression and

SNP-based h2. h2 based on parent-offspring regression is esti-

mated as the slope of the regression line for offspring pheno-

types versus mid-parent phenotypes (Falconer and Mackay,

1996). We observed h2 estimates from �0.06 to 0.85

(average h2 = 0.33) (Figure 1C; Data S2; Table S3). The majority

(64/79) of phenotypes showed significantly non-zero h2 by this

method (p < 0.05). In contrast, SNP-based h2, as implemented

in GCTA software (Yang et al., 2011) with the Zaitlenmodification

for related individuals (Zaitlen et al., 2013), calculates the propor-

tion of variance that can be explained by all genotyped SNPs.

With this method, we observed pedigree h2 ranging from 0.04

to 0.76 (average h2 = 0.36), and SNP-based h2 ranging from

0.02 to 0.66 (average h2 = 0.19) (Figure 1C; Table S3). The

SNP-based h2 estimates must be interpreted with caution, as

small sample sizes resulted in large standard errors (Table S3).

We observed high correlation between h2 estimated using the

two different methods (R = 0.58; p = 2.93 10�8; Figure 1D). The

strong correlation between the two estimates of h2, based on

distinct statistical frameworks, provides additional evidence

that LCLs provide a robust system to identify human SNPs that

contribute to the heritability of cellular phenotypes.

H2P2 Reveals 17Genome-wide Significant Associations
and Enrichment for Genic SNPs and Regions of Active
Chromatin
We performed family-based GWAS using dense genotyping in-

formation (15.5 million SNPs after imputation; see STAR

Methods). Across 79 traits, 17 loci reached a genome-wide sig-

nificance threshold of p < 5 3 10�8 (Figure 2A; Table 1). Pheno-
Figure 2. GWA of H2P2 Revealed 17 Genome-wide Significant Loci Inc

(A) Meta-Manhattan plot for 79 traits shows 17 peaks (red) with p < 5 3 10�8 (do

(B) GARFIELD enrichment plot of SNP location demonstrated enrichment of SN

associated with H2P2 traits at various p value thresholds were plotted in the ind

enrichment from 0 to 10.

(C) GARFIELD enrichment plot of DNase hypersensitivity peaks demonstrated enr

in multiple cell/tissue types.

(D) Regional plot around the CXCL10 gene demonstrated association of rs28694

position on chromosome 4 and –log(p value) and color-coded by r2 value to rs28

(E) Genotypicmedians, first and third quartiles (box), andmaximum andminimum

LCLs from all LCLs.

(F) Map of rs2869462 allele frequencies (C, orange; G, blue) from Geography of

(G) Individual population genotypic median plots for rs2869462 for CXCL10 levels

parents in PLINK.

See also Table S4; Figures S4 and S5.
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type permutation analysis demonstrated that to obtain an a of

0.1, a more stringent p value threshold of p < 2.76 3 10�8 is

appropriate (Figure S4). At this threshold, 10 higher-confidence

loci remain, although we emphasize that H2P2 should be viewed

as a hypothesis-generating resource and that SNPs even at this

more stringent threshold should undergo further validation.

Several of these SNPs demonstrated very different allele fre-

quencies among populations (Table S4). If we had conducted

this study only in European LCLs, we would not have detected

five SNPs that are rare/absent in European populations. Like-

wise, if we had conducted this study only in African LCLs, we

would not have detected four of the associated SNPs. This un-

derscores the need for conducting GWAS in multiple popula-

tions for revealing a greater spectrum of genetic differences of

functional significance.

H2P2 demonstrated enrichment of associated SNPs for func-

tional genome annotations. We used GARFIELD to calculate and

visualize fold enrichment of SNPs associated in H2P2 at variable

p value thresholds with different genomic features (Iotchkova

et al., 2016). In regard to SNP location, the greatest enrichment

was observed for exonic SNPs (Figure 2B). The fold enrichment

was highest at themost stringent p value threshold (p < 13 10�8)

for H2P2 traits (9.2-fold enrichment; p = 0.10 by Fisher’s

exact test) and was statistically significant when using a

p < 5 3 10�8 threshold for H2P2 traits (3.9-fold enrichment;

p = 0.047). In contrast, there was depletion for intergenic SNPs

at the p < 53 10�8 threshold (0.66-fold enrichment). H2P2-asso-

ciated SNPs showed even greater enrichment for regions of

active chromatin based on DNase hypersensitivity peaks from

ENCODE (ENCODE Project Consortium, 2012) (Figure 2C).

Consistent with H2P2 being conducted in LCLs, the second

greatest enrichment was observed for DNAase hypersensitivity

peaks measured in the LCL GM06990 out of 424 cell

types measured (at p < 5 3 10�8, 5.7-fold enrichment;

p = 3.8 3 10�3). Even stronger enrichment was noted at

this threshold for human Th2 cells (7.3-fold enrichment;

p = 3.5 3 10�4), and enrichment was observed for cells derived

frommost tissues (Figure 2C), consistent with LCLs being a rele-

vant model for genetic analysis for multiple human cell types.

A Large-Effect cis-Regulatory Variant Regulates
CXCL10 Levels
The strongest association was observed for rs2869462 with

levels of the chemokine CXCL10 (also known as IP-10) following
luding a cis-Cytokine-QTL Near CXCL10

tted line). –log(p values) were calculated using QFAM-parents in PLINK.

Ps associated with H2P2 phenotypes in exons, and 50 and 30 UTRs. SNPs
icated colors and the height of the peak within each category indicates fold

ichment of SNPs associated with H2P2 phenotypes in active chromatin regions

62 with CXCL10 levels from C. trachomatis-infected cells. SNPs are plotted by

69462 from 1000 Genomes European data.

values (whiskers) for rs2869462 for CXCL10 levels fromC. trachomatis-infected

Genetic Variants Browser (Marcus and Novembre, 2017).

demonstrated C > G in all populations. p values were generated with QFAM-



Table 1. Genome-wide Significant H2P2 SNPs

SNP ID Chr Position Cellular Trait p Value

Risk

Allele Genea
Parent-Offspring

h2 for Trait (%)

SNP-Based

h2 for Trait (%)

Variance Explained

by SNP (Parental

LCLs Only) (%)

rs7566597 2 56289463 MIP1B_Chlamydia 4.67 3 10�8 G CCDC85A 58.2 33.3 4.4

rs9883818 3 337848 MDC_Uninfected_ELISA 1.70 3 10�8 A CHL1 28.6 9.8 1.2

rs150230900 3 38822664 Chlamydia_70hr_GFP 3.50 3 10�8 – near RP11-134J21.1 21.1 12.9 1.0

rs953897 3 114349113 Chlamydia_46hr_highGFP 1.30 3 10�8 T ZBTB20 33.0 20.1 2.4

rs11287866 4 39317796 IL4_Chlamydia 2.60 3 10�8 TA RFC1 36.8 22.7 1.6

rs2869462 4 76013566 IP10_Chlamydia 2.00 3 10�9 C ART3; near CXCL10 48.3 25.2 13.7

rs28540901 4 184492384 IL10_Uninfected_Luminex 1.60 3 10�8 T near IRF2 10.8 9.2 2.9

rs11957501 5 149250737 MDC_S_typhimurium 3.25 3 10�8 C ABLIM3 43.3 10.7 4.9

rs6555828 5 157066729 Chlamydia_70hr_median_GFP 1.60 3 10�8 G near HAVCR1 27.3 22.6 2.8

rs139408032 8 8882324 FGF2_Mucor 1.65 3 10�8 A MFHAS1 38.2 21.9 2.7

rs61836093 10 14235152 FGF2_Candida 3.80 3 10�8 G FRMD4A 43.7 16.3 2.0

rs74142986 10 81018235 TNFb_Chlamydia 1.85 3 10�8 T – 35.6 18.2 2.5

rs10750312 11 99526242 S_typhimurium_Intracellular_

Replication_24_3_5hr_median_GFP

3.00 3 10�9 G CNTN5 22.7 10.2 3.2

rs4905049 14 93121941 Chlamydia_46hr_highGFP 3.30 3 10�8 G near ITPK1 33.0 20.1 0.3

rs4949082 16 63851836 IP10_S_typhimurium 3.70 3 10�8 A – 40.1 9.1 1.2

rs16956501 17 48419912 Chlamydia_70hr_median_GFP 1.10 3 10�8 C SKAP1 27.3 22.6 0.2

rs4121804 18 59790252 Chlamydia_46hr_highGFP 4.11 3 10�8 G – 33.0 20.1 0.6

A single SNP with the lowest p value is listed for each peak. SNPs described in the text are underlined.
aGene the SNP is located in or ‘‘near’’ (within 20 kb).
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Chlamydia infection (p = 23 10�9; Figures 2D and 2E). This SNP

is located 7.5 kb 30 of the CXCL10 coding sequence (Figure 2D).

CXCL10 mediates inflammation by coordinating T helper 1

recruitment and activating effector cells during infection and

autoimmunity (Groom and Luster, 2011). The effect of this SNP

is large: rs2869462 accounts for 13.7% of the variance in

CXCL10 protein levels. While no dataset is available to replicate

this association at the protein level, this SNP also demonstrated

an association withCXCL10mRNA (p = 73 10�7) in an indepen-

dent set of 465 uninfected LCLs (Lappalainen et al., 2013; none

of the LCLs overlap the H2P2 LCLs) (Figure S5).

There were large differences in rs2869462 allele frequencies

among the populations. The derived allele of rs2869462 (G) is

present at the highest frequencies in Europe (28% in Iberian

Population in Spain) and Asia (29% in Kinh in Ho Chi Minh City,

Vietnam) and is substantially lower in Africa (0.8% in Esan in

Nigeria, 0.8% in Gambians in Western Divisions in the Gambia;

Figure 2F; Table S4). Strikingly, all populations demonstrated

the same directionality of effect on CXCL10 levels (C > G)

(Figure 2G).

SNPs Lead to Pleiotropic Effects on Multiple Pathogen-
Induced Traits
Different pathogens can target common signaling pathways to

establish an intracellular niche or to modulate immune re-

sponses. Therefore, we examined whether genome-wide signif-

icant hits were associated with multiple traits at p < 0.05 or, with

Bonferroni multiple test correction, p < 6.3 3 10�4. All genome-

wide significant hits were associated with at least four H2P2

traits at p < 0.05 (Figure 3A). However, several phenotypes are

closely related and therefore these cross-phenotype associa-

tions do not reflect true pleiotropy, multiple unrelated effects

due to the same gene (Solovieff et al., 2013). For example,

rs2869462 had five cross-phenotype associations but four of

these traits are based on CXCL10 levels (Figure 3B). Beyond

the existence of pleiotropy, the pattern of which traits shared

genetic associations provided additional insight (Figure 3C). A

circle plot of cross-phenotype associations showed most

cross-phenotype associations in H2P2 connect invasion, estab-

lishment of an intracellular niche, and intercellular spread. Traits

that had high phenotypic correlation (Figure 1B) were more likely

to have cross-phenotypic associations as expected (Figure 3D).

The greatest number of associated traits at p < 0.05 occurred

for rs953897, a SNP in the gene encoding the transcriptional

repressor ZBTB20. Based onGTEx data, rs953897 is associated

with ZBTB20-AS1 transcript abundance (p = 1 3 10�9) (GTEx

Consortium, 2015). While rs953897 is most strongly associated

with high C. trachomatis burden at 46 hr (p = 1.3 3 10�8), this
Figure 3. Cross-Phenotype Associations and Pleiotropy Are Abundant

(A) Histograms of the number of cross-phenotype associations for the 17 H2P2

GWAS peak, the number of traits with associations at p < 0.05 and p < 6.33 3 1

(B) Q-Q plot and PheWAS plot for the association of rs2869462with the 79 H2P2 p

phenotypes. Gray shading indicates 95% confidence intervals.

(C) Circle plot of 79 phenotypes by category and lines connecting traits that sha

(D) Plot of pairwise trait phenotypic similarity (Spearman correlation) versus similar

have more shared SNPs with p < 1 3 10�3 for both traits.

(E) Q-Q plot and PheWAS plot for the association of rs953897 with the 79H2P2 ph

including traits in different biological categories in the PheWAS plot.
SNP was associated with 20 H2P2 traits (p < 0.05) and 5 traits

using a multiple test-corrected threshold of p < 6.3 3 10�4. A

Q-Q plot comparing p values for all traits for rs953897 confirmed

the high degree of pleiotropy, demonstrating strong deviation

from neutrality toward lower p values (Figure 3D). These associ-

ations even included other pathogens and biological processes,

as the third most strongly associated trait was S. Typhimurium-

induced pyroptosis (p = 7.5 3 10�5).

ZBTB20 Affects the Outcome of Chlamydia and
Salmonella Infections
The T allele of rs953897was associatedwith both higher levels of

Chlamydia replication (Figure 4A) and Salmonella-induced py-

roptosis (Figure 4B). Reduction of ZBTB20 expression by RNAi

increased Chlamydia replication and pyroptosis, mimicking the

effect of the T allele (Figures 4C and 4D). Depletion of ZBTB20

also indicated that some phenotypes that did not reach statisti-

cally significant associations with rs953897 after multiple-test

correction were nonetheless mediated by ZBTB20. Specifically,

expression of IL-6 after infection with Chlamydia (p = 0.03) was

reduced after ZBTB20 RNAi treatment, again mimicking the ef-

fect of the T allele (Figure 4E). Thus, the association data and

functional validation point to a role for ZBTB20 in the regulation

of multiple infection-related phenotypes.

ZBTB20 has been characterized as a transcriptional repressor

during prenatal development in liver and brain (Mitchelmore

et al., 2002; Xie et al., 2008). Rare protein-coding mutations in

ZBTB20 are responsible for Primrose syndrome, which has fea-

tures as disparate as mental retardation, ossified external ears,

and distal muscle wasting (Cordeddu et al., 2014). We hypothe-

sized that one ZBTB20 target genemight regulate a pathway that

impacted multiple biological processes related to pathogen im-

munity. An attractive target, IkB (NFKBIA), the canonical sup-

pressor of nuclear factor kB (NF-kB) signaling, is subject to

ZBTB20 transcriptional repression (Liu et al., 2013). Reduction

of ZBTB20 expression in LCLs by RNAi caused a moderate in-

crease in expression of IkB (Figure 4F). An increase of IkB should

cause inhibition of NF-kB signaling, resulting in increased Chla-

mydia replication but decreased expression of pro-inflammatory

cytokines including IL-6. Consistent with this prediction, deple-

tion of IkB decreased Chlamydia replication and increased IL-6

production (Figures 4C and 4E). In contrast, depletion of IkB

did not impact Salmonella-induced pyroptosis, indicating an

IkB-independent mechanism (Figure 4D). These observations

point to multiple roles for ZBTB20 in regulating cellular functions

during infection, both through suppression of regulators of

signaling pathways, such as NF-kB, but also through regulation

of other unidentified targets.
among Cellular Host-Pathogen Traits

genome-wide significant hits. For the most strongly associated SNP in each

0�4 is shown.

henotypes showed deviation from neutral expectation only for the four CXCL10

re the same genome-wide significant hit at p < 1 3 10�5.

ity of shared SNPs (Jaccard index). Traits that weremore phenotypically similar

enotypes showed deviation from neutral expectation for dozens of phenotypes,
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Interestingly, the geographic distribution of rs953897 was

similar to rs2869462 (Figure 4G, compare with Figure 2F). For

both SNPs, the derived allele (C for rs953897 and G for

rs2869462) is more common in non-African populations (see

Table S4). However, the effects of these alleles on inflammatory

cytokine production are in opposite directions: the rs953897 C

allele is associated with more IL-6, while rs2869462 G is associ-

ated with less CXCL10, suggesting complex evolutionary forces

in shaping diversity of host-pathogen traits.

SNPs Linked to CXCL10 Expression Are Associated with
Inflammatory Bowel Disease
Wedetermined ifSNPsassociatedwithcellular traits inH2P2were

associated with human disease. Consistent with the rs2869462 C

allele being associatedwith increasedCXCL10 and inflammation,

we discovered that this allele is a previously unrecognized inflam-

matory bowel disease (IBD) risk allele. CXCL10 inhibitory anti-

bodies have undergone phase II clinical trials for both subtypes

of IBD,Crohn’s disease (CD), andulcerativecolitis (UC) (Sandborn

et al., 2016, 2017), based on evidence from animal models

(Hyun et al., 2005) and of elevated levels of CXCL10 in patients

(Ostvik et al., 2013). Examination of GWAS summary statistics

from the IBD Genetics Consortium meta-analysis of 12,882 IBD

cases and 21,770 controls (Liu et al., 2015) demonstrated that

rs2869462 is associated with IBD (p = 1.7 3 10�4; odds ratio

[OR] = 1.08), as well as with CD (p = 1.9 3 10�3; OR = 1.09) and

UC subtypes (p = 0.016; OR = 1.06) separately. The direction of

association is consistent with high levels of CXCL10 (the C allele)

being associated with greater risk of IBD.

We conducted colocalization analysis to determine whether

the CXCL10 protein level signal was the same as the IBD signal.

We utilized COLOC, which uses a Bayesian framework to deter-

mine whether GWAS signals in the same region are likely due to

the same causal variant (Giambartolomei et al., 2014). The pos-

terior probability that both CXCL10 protein level and IBD share

the same causal variant is as high as 0.80 for the region, with

rs2869462 identified as the most likely causal SNP (Table S5).

Comparison of regional plots of association indicate that the

same linkage disequilibrium block is associated with both

CXCL10 levels and IBD (Figure 5A).

We independently tested for this association using electronic

medical record (EMR) data from the eMERGE Network (McCarty
Figure 4. Genetic Variation Influencing ZBTB20 Regulates Multiple Ho

(A) Regional plot for ZBTB20 demonstrated an association of rs953897 with C. tra

plot (with first and third quartiles [box] and maximum and minimum values [whis

(B) Regional plot for ZBTB20 demonstrated an association of rs953897 with S. T

rs953897 with S. Typhimurium-induced pyroptosis in all LCLs.

(C–F) LCL GM1761was treated with NT, ZBTB20 (53%± 9%knockdown), or IkB (

were normalized to NT prior to statistical analysis. Means (±SEM) were plotted. (C

replication resulted in a high GFP + population of cells with an enlarged GFP+Chla

greater percentage of high GFP+ cells, similar to what was seen with the T allele,

cells in NT samples was 1.63% (±0.07%). (D) ZBTB20 regulates Salmonella-indu

percentage of pyroptotic cells, similar to what is seen with the T allele, while IkB k

sampleswas 35.1% (±1.4%). (E) Both the T allele and ZBTB20 knockdown result in

IL-6 in all LCLs. ZBTB20 knockdown reduced IL-6 levels, while knockdown of I

186 pg/mL (±31.6 pg/mL). (F) ZBTB20 knockdown increased IkB mRNA (normal

(G) Map of rs953897 allele frequencies (T, orange; C, blue) from Geography of Gen

biological replicates from 2 to 4 experiments. p values for (C–E) were generated

p values in genotypic median plots (A, B, and E) were generated with QFAM-par
et al., 2011). The eMERGE dataset holds genotype-phenotype

correlations of >80,000 individuals with phenotypes assigned

based on ICD-9 patient billing codes (Denny et al., 2013). We

tested for association with the codes for ‘‘inflammatory bowel

disease and other gastroenteritis and colitis’’ and the more

restrictive code for ‘‘ulcerative colitis.’’ rs2869462 was associ-

ated with both phenotypes in the predicted direction (p = 0.003;

OR = 1.12, C allele for IBD, p = 0.02; OR = 1.12, C allele for UC)

(Figure 5B). Therefore by first identifying a SNP associated with

CXCL10 levels in an LCL model of C. trachomatis infection, we

have discovered and replicated an IBD risk allele.

H2P2 SNPs Are Associated with Disease in PheWAS of
EMR Traits
Next, we systematically generated hypotheses regarding the ef-

fects of the H2P2 genome-wide significant hits on human dis-

ease by employing a PheWAS (phenome-wide association

study) approach, looking for associations across a large set

(1,338) of clinical measurements and diseases cataloged in

eMERGE (Denny et al., 2013). Five of 16 H2P2 genome-wide sig-

nificant hits surpassed the multiple test corrected significance

threshold with at least one EMR phenotype (Figure 6A; Table

S6; 1 H2P2 SNP was not in eMERGE and had no good proxy).

The SNP with the greatest number of PheWAS associations

was rs7566597. This SNP, associated with the H2P2 phenotype

of Chlamydia-infected levels of the chemokine MIP-1b ([macro-

phage inflammatory protein-1beta] CCL4), was associated with

five clinical traits. The most significant association (p = 1.76 3

10�6; p = 0.0024 after Bonferroni; OR = 1.40) was observed

with otorrhea (Figure 6B). Otorrhea is ear drainage most

commonly caused by an ear infection. MIP-1b is elevated in fluid

from patients with middle ear infections (Kaur et al., 2015), mice

with genetic predisposition to middle ear infections (Han et al.,

2012), and primary middle ear epithelial cultures infected with

influenza or Streptococcus pneumoniae (Tong et al., 2003).

The directionality of this association (G allele associated with

both higher MIP-1b levels and increased risk of otorrhea), and

the fact that genotype is fixed prior to disease, lead to the hy-

pothesis that the rs7566597 G allele causes higher levels of

MIP-1b to increase risk of otorrhea.

eMERGE PheWAS also revealed that rs953897 in ZBTB20

was associated with viral hepatitis (Figure 6C; p = 3.17 3 10�5;
st-Pathogen Traits

chomatis high GFP-infected cells at 46 hr (p = 1.33 10�8). Genotypic medians

kers]) of rs953897 with high GFP-infected cells at 46 hr in IBS LCLs.

yphimurium-induced pyroptosis (p = 7.5 3 10�5). Genotypic medians plot of

83%± 2%knockdown) Accell RNAi for 3 days prior to infection. Measurements

) ZBTB20 and IkB regulate C. trachomatis replication. By 46hr, C. trachomatis

mydia-containing vacuole. Scale bar, 10 mm. ZBTB20 knockdown resulted in a

while IkB knockdown produced fewer. Mean (±SEM) percentage of high GFP+

ced pyroptosis independent of IkB. ZBTB20 knockdown resulted in a greater

nockdown showed no significant change. Percentage of pyroptotic cells in NT

reduced IL-6. Genotypicmedian plot of rs953897withC. trachomatis-induced

kB led to increased levels measured at 70 hr. IL-6 levels from NT LCLs were

ized by 18 s).

etic Variants Browser (Marcus and Novembre, 2017). (C)–(F) were from 8 to 12

from one-way ANOVA analysis while (F) was calculated by an unpaired t test.

ents in PLINK.
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Figure 5. SNPs Associated with High CXCL10 in H2P2 Are Associ-

ated with Increased Risk of IBD
(A) Overlaid association plots of the CXCL10 region demonstrated colocali-

zation of signals for Chlamydia-infected CXCL10 levels from H2P2 (gray) and

IBD GWAS (blue) (Liu et al., 2015). rs2869462 is highlighted in red and yellow.

(B) OR plot for rs2869462 and IBD, CD, and UC based on data generated in Liu

et al. (2015) and replication of the association with ‘‘IBD and other gastroen-

teritis and colitis’’ and UC from the eMERGE Network.

See also Table S5.
p = 0.025 after Bonferroni; OR = 1.20). To test this association

experimentally, we performed RNAi against ZBTB20 in Huh7 hu-

man hepatocytes. Depletion of ZBTB20 mRNA (Figure 6D)

increased the percentage of hepatitis C virus (HCV) infected cells

over time (Figure 6E) and increased infectious virus production

by 7-fold (Figure 6F). To determine what downstream targets

of ZBTB20 repression might be mediating this increase, we per-

formed RNA sequencing of uninfected Huh7 cells treated either

with non-targeting (NT) or ZBTB20 small interfering RNA (siRNA).
318 Cell Host & Microbe 24, 308–323, August 8, 2018
A total of 1,123 genes were upregulated in ZBTB20 siRNA-

treated compared with NT (at false discovery rate [FDR]-cor-

rected p = 0.05; Figure 6G; Table S7). Two of the top 10 gene

sets enriched in upregulated genes were targets of the transcrip-

tional activator hepatocyte nuclear factor 4 alpha (HNF4a) (Fig-

ure 6H; Table S7). HNF4a was 28% lower in NT compared with

ZBTB20 siRNA-treated (FDR-corrected p = 63 10�5), consistent

with ZBTB20 suppression of HNF4a. Remarkably, depletion of

HNF4a by a similar magnitude has been demonstrated to cause

a 3-fold decrease in HCV production in hepatocytes (Li et al.,

2014), similar to the 7-fold lower levels we observed with NT

compared with ZBTB20 siRNA (Figure 6F). Thus, genetic varia-

tion in ZBTB20 has broad pleiotropic effects likely being medi-

ated by suppression of different transcriptional targets, including

HNF4a in hepatocytes (Figure 6I). This example demonstrates

that combining H2P2 with PheWAS of clinical traits can lead to

hypotheses that can be quickly tested in the most clinically rele-

vant cell type.

DISCUSSION

With H2P2, we have coupled the ability of pathogens to influence

human genetic diversity to their use as cellular probes to eluci-

date mechanisms of disease. This cellular GWAS approach re-

veals: (1) molecules that could serve as possible biomarkers

and therapeutic targets and (2) cellular models for validation

and mechanistic dissection. We have developed an H2P2 web

database to allow for exploration of this rich dataset (http://

h2p2.oit.duke.edu).

Cellular GWAS studies have also been performed on levels of

immune cells, cell surface proteins, and cytokines (Mikacenic

et al., 2013; Orru et al., 2013; Roederer et al., 2015). However,

Hi-HOST is unique in using live pathogens to induce complex

cellular phenotypes, such as cell death and invasion, providing

phenotypes intermediate between molecular phenotypes of

gene/protein expression and human studies of disease. In

addition, our use of parent-offspring trios allowed us to make

estimates of h2 through both parent-offspring regression and

SNP-based methods that correlated quite strongly. Our esti-

mates of h2 are similar to other reports for immune-related

traits. Orru et al. (2013) examined levels of 95 immune cell

types and found mean h2 of 41%. Our results are consistent

with a strong genetic basic for variation in immune cell traits

and host-pathogen interactions, although environment also

has a large effect.

Integrating H2P2 with human genetic association data re-

vealed how genetic variants impacting cellular traits also influ-

enced human disease. While over a hundred IBD risk alleles

have been identified (Liu et al., 2015), the fact rs2869462 was

associated with levels of CXCL10 in H2P2maymake genotyping

this SNP clinically actionable if coupled to anti-CXCL10 therapy.

While anti-CXCL10 demonstrated some benefit in phase 2 trials,

neither study met statistical significance (Sandborn et al., 2016,

2017). We hypothesize that rs2869462 genotype might be a pre-

dictive biomarker for identifying the genetic subtype of patients

who show greatest benefit. This example, spanning molecular

phenotype, human disease, and clinical utility serves as a tem-

plate for how we envision the H2P2 web portal being used to

make similar discoveries.

http://h2p2.oit.duke.edu
http://h2p2.oit.duke.edu
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For CXCL10, ZBTB20, and other genes implicated by H2P2,

there are numerous associations that do not reach genome-

wide significance but are undoubtedly true-positives based on

highly related phenotypes or experimental evidence. Indeed,

our lab previously pursued non-genome-wide significant hits re-

vealed by Hi-HOST, resulting in the identification of a metabolite

biomarker for sepsis (Wang et al., 2017) and suggesting a poten-

tial therapeutic strategy for typhoid fever (Alvarez et al., 2017).

However, to fully illuminate how genetic variation contributes

to pathophysiology of disease will require the engagement of

the research community with the H2P2 web portal and similar

datasets. These users, already experts on particular genes

and/or cellular pathways, would be well-equipped to then vali-

date and discover the mechanisms underlying these associa-

tions. Future studies will expand the panel of stimuli and the

cell types used in H2P2 to create a more complete picture of

how cellular traits impact human health and disease, an impor-

tant step toward a future of more personalized care.

Information about the eMERGENetwork sites, leadership, and

other details can be found at https://emerge.mc.vanderbilt.edu/.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cells
1000 Genomes LCLs (528; all trios) from ESN (Esan in Nigeria), GWD (Gambians in Western Divisions in the Gambia), IBS (Iberian

Population in Spain), and KHV (Kinh in Ho Chi Minh City, Vietnam) populations were purchased from the Coriell Institute. LCLs

were maintained at 37�C in a 5% CO2 atmosphere and were grown in RPMI 1640 media (Invitrogen) supplemented with 10% fetal

bovine serum (FBS), 2 mM glutamine, 100 U/mL penicillin-G, and 100 mg/mL streptomycin.

Human hepatoma Huh7 cells were grown in DMEM (Mediatech) supplemented with 10% fetal bovine serum (HyClone), 2.5 mM

HEPES, and 13 non-essential amino acids (complete, cDMEM; Thermo Fisher Scientific). The identity of the Huh7 cell line was veri-

fied using the Promega GenePrint STR kit (DNA Analysis Facility, Duke University), and cells were verified asmycoplasma free by the

LookOut Mycoplasma PCR detection kit (Sigma). Infectious stocks of a cell culture-adapted strain of genotype 2A JFH1 HCV were

generated and titrated by focus-forming assay (FFA), as described (Aligeti et al., 2015).

METHOD DETAILS

LCL Screening
LCLs were received from Coriell and cultured for 8 days prior to assays. LCLs were counted with a Guava Easycyte Plus flow cytom-

eter (Millipore). LCLs were washed once with RPMI 1% FBS and then plated out in RPMI 10% FBS at 200,000 cells/200 mL for
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Salmonellae, 100,000 cells/100 mL for fungi, and 40,000 cells/100 mL for S. aureus alpha toxin, C. trachomatis, and T. gondii. Cells

were passaged at 150,000/mL in 20 mL total volume for three days.

C. trachomatis Infection
C. trachomatis LGV-L2 RifR pGFP::SW2 was grown and purified as previously described (Saka et al., 2011). C. trachomatis was

added at MOI 5 in 100 mL assay media, mixed by multichannel pipetting, and centrifuged onto cells at 3000 RPM for 30 min at

4�C. At 27, 46, and 70 hr, cells were mixed and 25 mL was taken for flow cytometry measurement (4000 cells). 25 mL of supernatant

at 70 hr was measured by Luminex assay for 17 cytokines.

Salmonella Infection
Salmonellae were tagged with an inducible GFP plasmid (pMMB67GFP from Pujol and Bliska, 2003). sifA deletion mutant was con-

structedwith lambda red (Datsenko andWanner, 2000) and verified by PCR. Assaying LCLs for Salmonellae infection was conducted

as previously described (Ko et al., 2009). Overnight bacterial cultures were subcultured with a 1:33 dilution and grown for 2 hr 40 min

at 37�C. Invasion was conducted for 1 hr at a multiplicity of infection (MOI) of 10 for S. Typhi andMOI 30 for S. Typhimurium, followed

by addition of gentamicin (50 mg/mL) for 1 hr, and then culture was split into two separate cultures of 60 mL of cells with 140 mL of

media to dilute gentamicin (15 mg/mL) and allow for collection at two timepoints. IPTG (1.4mM) was added to turn onGFP expression

for 75 min prior to 3.5 hr and 24 hr timepoints. For the 3.5 hr timepoint, 150 mL of cells were stained with 7-AAD

(7-aminoactinomycin D; Enzo Life Sciences) and green and red fluorescence of 7000 cells was measured on a Guava Easycyte

Plus flow cytometer (Millipore). For the 24 hr timepoint, cells were spun down and 2 aliquots of 55 mL of supernatant was removed

and stored at –80�C for subsequent IL10 (25 mL), CXCL10 (25 mL), andMDC (4 mL) ELISAs (R&D Systems). 55 mL of cells were stained

with 7-AAD and measured by flow cytometry.

Fungal Infection
TheMucor circinelloides f. lusitanicusR7B (leuA-) (Roncero, 1984) strain andCandida albicans SC5314 (Odds et al., 2004) strain were

used to induce FGF-2 from the LCLs. Leucine autotropism (leuA–) was found not to impact virulence (Li et al., 2011). To prepare

Mucor spores, potato dextrose agar (PDA, 4 g potato starch, 20 g dextrose, and 15 g agar per liter) was inoculated and incubated

for 4 days at 26�C in the light. To collect spores, sterile deionized distilled water was added onto the plates and spores were released

by gently scraping the colonies with a cell spreader. Spores were counted by using a hemocytometer. To prepare C. albicans yeast,

yeast dextrose broth (10 g yeast extract, 20 g peptone, 20 g glucose per liter) was inoculated and incubated at 30�C by shaking at

250 rpm overnight. The yeast cells were quantified by using a hemocytometer. To co-culture with LCLs, all fungal cells were washed

with sterile PBS twice. Fungi were added at MOI 1 in 10 mL and incubated for 24 hr. Culture supernatant was collected and stored

at –80�C for later FGF-2 ELISA analysis (R&D Systems).

S. aureus Toxin Treatment
LCLs were treated with alpha-hemolysin (Sigma) at 1 mg/mL for 23 hr. Cells were mixed and cell death quantified by 7-AAD staining

(concentration) and flow cytometry.

T. gondii Infection
T. gondii strain RHgfpluc was grown on confluent human foreskin fibroblast cells. The infected cells were then scraped and

transferred to a 50 mL polystyrene tube and centrifuged at 500 x g for 10 min at 4�C. Pellet was resuspended in 3 mL of PBS and

the suspension was aspirated three times using a 20 g needle attached to a 10mL syringe. 30 mL of PBS was added and centrifuged

at 500 x g for 10 min at 4�C. Supernatant was removed and pellet resuspended in 5mL of PBS. Concentration of a 1:200 dilution was

determined by flow cytometry and added at MOI 2 to cells. At 5, 30, and 48 hr infection, cells were mixed, and 25 mL taken for

measuring 4000 cells by flow cytometry.

Note that T. gondii parasites were prepared separately for each infection assay from human fibroblasts that were passaged contin-

uously for H2P2 screening. Therefore, there was more inter-experiment variation in the pathogen compared to, for example,

C. trachomatis (which was prepared as a single batch for the entire screen and frozen into single-use aliquots). Additionally,

T. gondiiwas incorporated into H2P2 after the screen had already commenced, and only 335 LCLs were assayed with this pathogen.

For these reasons, measured inter-individual variation for the Toxoplasma traits was less reliable, and there was less power to detect

genetic associations.

LCL RNAi Experiments
LCLs (2 x 105 cells) were treated for three days in 500 mL of Accell media (Dharmacon) with either non-targeting Accell siRNA #1 or

an Accell SmartPool directed against human ZBTB20 or NFKBIA (1 mM total siRNA; Dharmacon). Prior to infection, cells were plated

at 1 x 105 in 100 ml RPMI complete media (without antibiotics) in 96-well plates. Infections were conducted as described above.

HCV Infection Experiments
Huh7 cells were seeded in 12-well plates at a density of 1 x 105 cells per well in cDMEM and transfected the next day using 9 mL

RNAiMAX (Thermo) and 3 mL of the indicated 10 mM siRNA (siGenome Smartpool [Dharmacon]), in Optimem (Thermo). Four hours
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post-transfection, the transfection mixture was removed and 1 mL fresh cDMEM was added. HCV infections were performed at an

MOI of 0.3 for 24, 48, or 72 hr. For each condition, duplicate wells were either infected ormock-infected, RNAwas harvested from one

well and the other utilized for visualization of infected cells. Supernatant was collected from both wells for virus titration.

HCV focus forming assay. Serial dilutions of supernatants collected from non-targeting or ZBTB20-targeting siRNA treated cells

collected 72 hpi were used to infect naive Huh7.5 cells in triplicate wells of a 48-well plate. At 48 hpi, cells were fixed, permeabilized,

and immunostained with HCV NS5A antibody (1:500; gift of Charles Rice, Rockefeller University). Following binding of horseradish

peroxidase (HRP)-conjugated secondary antibody (1:500; Jackson ImmunoResearch), infected foci were visualized with the VIP

Peroxidase Substrate Kit (Vector Laboratories) and counted at 403 magnification.

Visualization of HCV infected cells. 48 hr post-transfection, Huh7 cells treated with non-targeting or ZBTB20-targeting siRNAwere

infected with HCV (MOI 0.3) or mock-infected. 24 or 48 hr post-infection, cells were fixed in 4% paraformaldehyde in PBS, permea-

bilized with 0.2% Triton X-100 in PBS, and blocked with 3% BSA in PBS, then immunostained with HCV NS5A antibody (1:1000),

washed 3x in PBS-Tween, then visualized with Alexa Fluor 488 Donkey anti-Mouse secondary antibody (1:1000, Thermo). Cell nuclei

were stained with DAPI in the first of three PBS-Tween washes following the addition of secondary antibody. Two-color images were

collected with the Cellomics ArrayScan VTI HCS (Thermo), at 20x magnification in the Duke Functional Genomics Shared Resource.

10 fields of per-well, per-condition were acquired and the percentage of identified nuclei with detectable NS5A staining was quan-

tified using VHSview software (Thermo).

RNA-seq
RNA was obtained from three independent experiments from Huh7 cells transfected with siGENOME siRNA for 48 hr (described

above) and then mock-infected and incubated for an additional 24 or 48 hr. Stranded mRNA-seq libraries were generated and

run on an Illumina NovaSeq 6000 instrument with 50 bp paired-end reads by the Duke Sequencing and Genomic Technology Shared

Resource.

QUANTIFICATION AND STATISTICAL ANALYSIS

Phenotype Repeatability
Repeatability of each cellular trait was calculated from 3 independent experiments. The inter- and within-individual component of

variance was calculated by fitting with one-way ANOVA. The estimated within-individual component of variance gave the repeat-

ability coefficient.

Testing Effect of EBV Copy Number on H2P2 Cellular Phenotypes
EBV relative copy numbers were retrieved for 1753 LCLs (Mandage et al., 2017), of which 284 cell lines overlapped with H2P2 sam-

ples (73 ESN; 105 GWD; 106 IBS). Prior to analysis, H2P2 phenotypes were averaged from three experiment replicates and then

transformed to Z-scores within each experimental batch. Correlation between H2P2 cellular traits and EBV loads was tested using

linear regression with population as a covariate.

Genotype and Imputation
Genotypes for 1000 Genome LCLs (1000 Genomes Project Consortium et al., 2010) were from Illumina HumanOmni 2.5M array

(905,788 SNPs; see details in Key Resources Table). Genome-wide imputation of autosomal genotypes with 1000 genome Phase

3 haplotype as reference panel were performed through two steps, a pre-phasing step using SHAPEIT2 (Delaneau et al., 2013)

and an imputation step using IMPUTE2 (Howie et al., 2012). Imputed genotype was further filtered by imputation accuracy score

(IMPUTE’s INFO) < 0.9 and minor allele frequency < 0.01. A total of 339 samples overlap with 1000 genome Phase 3 individuals.

We merged direct sequenced genotypes from 1000 genome Phase 3 project into our imputed genotypes. We obtained

15,581,278 SNPs (8,817,925 SNPs have minor allele frequency R 0.05). The human genome reference assembly (GRCh37/hg19)

was used for all analysis.

Phenotype- and SNP-Based Heritability Analysis
Two different methods were applied to estimate heritability. The parent-offspring (PO) regression method estimated additive herita-

bility exclusively using phenotypic values. Linear regression of child against average of parents was performed, and the slope was

used as a heritability estimator. Batch was incorporated as a covariate. Genotype-based heritability was estimated using the GCTA

GREML method (Yang et al., 2011). Autosomal SNPs with minor allele frequency filtering of 0.05 were used to create a genetic rela-

tionship matrix (GRM). Zaitlen and colleagues developed a method, ‘‘big K/small K,’’ which estimates heritability by jointly using

closely related and unrelated individuals (Zaitlen et al., 2013). Following Zaitlen’s method, variance explained by genome-wide

SNPs (s2g) was then estimated for each cellular trait. The Zaitlenmodification provides joint estimates of 1) h2 based on pedigree relat-

edness and 2) h2 based on inferred relatedness from genome-wide SNPs.

While the standard error for SNP-based h2 estimates were quite large, we nonetheless observed very strong correlation between

these estimates and the parent-offspring h2 estimates (see Figure 1D). We estimated h2 based on the analysis of LCLs from all

populations in H2P2 to increase the precision of our estimates by including more individuals. Although h2 is a population-specific
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parameter, h2 are often quite similar across different populations and even species (Visscher et al., 2008). Nonetheless, we include

estimates and standard errors for the combined analysis as well as individual populations in Table S3.

Genome-wide Association Analysis
Genome-wide association analysis was conducted with PLINK v1.9 (Chang et al., 2015). Analysis was carried out using the QFAM-

parents approach with adaptive permutation and amaximum of 109 permutations. The QFAMprocedures implemented in PLINK use

linear regression to test for association while employing permutation of within- and between-family components separately to control

for family structure (Purcell et al., 2005).

Permutation Analysis
Simulation were carried out to estimate the genome-wide significance thresholds for H2P2 traits. For each cellular traits, we permu-

tated the phenotype and ran family based association analysis using ‘‘qfam-parents’’ in PLINK 1.9. Following Kanai et al., 2016, we

calibrated the empirical genome-wide significance threshold using the minimum p value from each simulation. We calculated the

90th percentile of the empirical distribution of �log10Pmin using the Harrel-Davis estimator (Harrel and Davis, 1982) at a = 0.1, and

the 95% confidence intervals of the quantile were obtained using 10000 bootstraps.

Enrichment Analysis
Enrichment analyses were carried out using GARFIELD (Iotchkova et al., 2016). GARFIELD has predefined a total of 1005 features

from ENCODE and the NIH Roadmap project, and applies generalized linear regression models while accounting for the effects of

linkage disequilibrium (LD), minor allele frequency, and local gene density. The GWAS summary statistics were used to quantify fold-

enrichment against predefined annotation features at different GWAS p value thresholds.

PheWAS Analysis
Testing for association of H2P2 genome-wide hits with clinical phenotypes was performed with the eMERGE biobank dataset of

83,717 individuals from 12 contributing medical centers (McCarty et al., 2011) with ICD-9 derived PheWAS codes (Denny et al.,

2013). A merged set of unified variant genotypes across 78 batches of samples with different genotype platforms (e.g. various Illu-

mina and Affymetrix arrays) was produced by imputation using the Michigan Imputation Server (MIS) with the HRC1.1 haplotype

reference set. Sixteen variants were selected for PheWAS based on association in H2P2 and their inclusion in the imputed eMERGE

biobank dataset. The PheWAS codeswere defined by query of the ICD-9 electronic medical record datasets of the contributingmed-

ical centers. Two types of PheWAS code phenotypes were used in the association to ascertain more chronic versus singleton diag-

noses: the minimum code count of one (mcc1) ICD-9 code to define an individual as a PheWAS code case, andminimum code count

of two (mcc2) instances to define an individual as a chronically represented case. In the mcc2 cases, individuals were excluded from

analysis if they only had one instance of the ICD-9 code. If there were less than 500 cases we did not include the ICD-9 derived

PheWAS code in analysis because it would likely be underpowered and impact the multiple testing correction. We also did not

include medical centers that had low ascertainment of the ICD-9 by excluding medical centers which had less than 10 cases.

This resulted in 1,338 for mcc1 and 788 for mcc2 phenotypes being included in the analysis. We used the PLINK1.9 identity by

descent genome file to find the set of unrelated individuals to bring forward for analysis. PheWAS association was implemented

in the R glm() logistic regression of the case-control data and plotting was carried out using the PheWAS R package (Carroll

et al., 2014). The covariates of gender and the PLINK1.9 computed 1 and 2 principal components from the pruned (>5%minor allele

frequency, genotype, and sample missingness > 0.1 and LD r-square<0.7.) genome-wide imputation variant genotypes were

included in the regressions. The p.adjust() R function with Bonferroni methods was used to adjust p values of the tested PheWAS

codes within a particular SNVs sets of tests for multiple comparisons. Bonferroni of less than 0.05 was used as a significance

threshold.

Colocalization Analysis
Colocalization analysis was performed using R ‘‘coloc’’ v2.3.1 package (available at http://cran.r-project.org/web/packages/coloc).

This software applies a Bayesian framework to estimate the posterior probability of genomic variants affecting both cellular trait and

disease based on pre-computed GWAS p values, odds ratios, andminor allele frequencies. We ran colocalization on a 400-kb region

centered on the focus SNP rs2869462 using default COLOC parameters (P1=P2=1x10–4; P12=1x10–5). Summary statistics of IBD

GWAS (Liu et al., 2015) were obtained from www.ibdgenetics.org.

Gene Expression Analysis on 1000 Genome RNA-seq Project
Gene expression data of 465 individuals (Lappalainen et al., 2013) were obtained from the EBI website (https://www.ebi.ac.uk/Tools/

geuvadis-das/). The rs2869462 genotype data were downloaded from the 1000 genome project (1000 Genomes Project Consortium

et al., 2010). Effects of rs2869462 on CXCL10 gene expression were tested by linear regression on both combined populations and

individual population.
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RNA-seq Analysis
RNA-seq data were processed using the TrimGalore toolkit v0.4.5 (Krueger, 2017) which employs Cutadapt v1.9.1 (Martin, 2011)

to trim low quality bases and Illumina sequencing adapters from the 30 end of the reads. Only reads that were 20 nt or longer after

trimming were kept for further analysis. Reads were mapped to the GRCh37v75 version of the human genome and transcriptome

(Kersey et al., 2012) using the STAR v2.6 (Dobin et al., 2013). Reads were kept for subsequent analysis if they mapped to a single

genomic location. Gene counts were compiled using the HTSeq v0.10.0 (Anders et al., 2015). Only genes that had at least 10 reads

in any given library were used in subsequent analysis. Normalization and differential expression was carried out using the DESeq2

v1.20.0 (Love et al., 2014) Bioconductor (Gentleman et al., 2004) package with the R statistical programming environment

(Team, 2016). Using batch and time point as cofactors in the model, we identified differentially expressed genes between the

ZBTB20 and the NT siRNA conditions. The false discovery rate was calculated to control for multiple hypothesis testing. Gene set

enrichment analysis (Mootha et al., 2003) was performed to identify gene ontology terms and pathways associated with altered

gene expression for each of the comparisons performed.

Descriptive Statistics and Visualization
Descriptive statistics were performed with GraphPad Prism 6 (GraphPad Software, US) and with R (Team, 2016). QQ plots were

plotted using quantile-quantile function in R. Regional Manhattan plot were made using LocusZoom (Pruim et al., 2010). Circos

v0.69 was used to visualize the shared SNPs among different groups. The size of each study or number of replicates, along with

the statistical tests performed can be found in Figure Legends. All numerical data are presented as the mean ± SEM (standard error

of mean).

DATA AND SOFTWARE AVAILABILITY

All H2P2 data are available for browsing and download at http://h2p2.oit.duke.edu.

The H2P2 application server is running RedHat Enterprise Linux Server v7.4, Apache v2.4.6, Shiny Server v1.5.3.838, R v3.4.1, and

Microsoft ODBC Driver 13 for SQL Server. Implemented R packages include shiny v1.0.3, RODBC v1.3-15, ggplot2 v2.2.1,

d3heatmap v0.6.11, and DT v0.2. The H2P2 database server is running MS Windows Server 2016 and MS SQL Server 2016. Large

volume tables and indexes (2.5 billionGWASobservations and 8.5 billion genotype observations) were partitioned for improved query

performance. Parallelized query implementation was also used to improve performance.

RNA-seq data are available in GEO: GSE116172.
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