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Acquisition of nutrients by Chlamydiae: unique challenges of
living in an intracellular compartment

Hector Alex Saka and Raphael H Valdivia
The Chlamydiae are obligate intracellular pathogens that

replicate within a membrane-bound vacuole, termed the

‘inclusion’. From this compartment, bacteria acquire essential

nutrients by selectively redirecting transport vesicles and

hijacking intracellular organelles. Rerouting is achieved by

several mechanisms including proteolysis-mediated

fragmentation of the Golgi apparatus, recruitment of Rab

GTPases and SNAREs, and translocation of cytoplasmic

organelles into the inclusion lumen. Given Chlamydiae’s

extended coevolution with eukaryotic cells, it is likely that co-

option of multiple cellular pathways is a strategy to provide

redundancy in the acquisition of essential nutrients from the

host and has contributed to the success of these highly

adapted pathogens.
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Introduction
The Chlamydiaceae comprise a distinct family of closely

related, obligate intracellular bacteria that diverged early

in evolution and parasitize a wide range of hosts [1]. The

human pathogens are widely distributed and include

Chlamydia trachomatis (leading cause of genital infections

and infectious blindness), C. pneumoniae (common cause

of respiratory tract infections and community-acquired

pneumonia), and C. psittaci (a zoonotic pathogen that can

cause severe pneumonia in humans) [2–6].

All Chlamydiaceae undergo a biphasic developmental cycle

involving the infectious and environmentally resistant

form, or elementary body (EB), and the replicative, non-

infectious form or reticulate body (RB). After entering
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their target eukaryotic cells, EBs differentiate into RBs,

and replicate within a membrane-bound parasitophorous

vacuole, termed the ‘inclusion’. Finally, RBs differentiate

back into EBs, which are released to the extracellular

medium to infect neighboring cells [7].

Chlamydia species have undergone massive genome con-

densation and are lacking in several biosynthetic path-

ways [8–12], suggesting that they have acquired

compensatory mechanisms to allow the import and

incorporation of nucleotides, amino acids, lipids, and

other nutrients from the host cell [13–18]. Though it is

a crucial step in their pathogenesis, the molecular mech-

anisms used by Chlamydia species to acquire nutrients are

poorly characterized largely because of the lack of a

system for mutational analysis and cell-free cultivation

methods.

In this review, we discuss our understanding of Chlamydia
nutrient acquisition pathways, based on information from

genome sequencing and new cell biological observations

detailing the extensive interactions between the

inclusion and host organelles.

Nutrient uptake systems
The current estimation of Chlamydia’s metabolic capacity

is founded on hints from genomic sequencing. As for any

living organism, Chlamydia needs pyrimidine and purine

nucleotides for energy transduction and nucleic acid

biosynthesis [19,20], but is unable to synthesize them de
novo. Chlamydia encodes enzymes that can generate ATP

via substrate level phosphorylation, and CTP from UTP

through a CTP synthetase; however, these organisms still

require host cell-derived ATP, GTP, and UTP

[10,12,14,15,21,22]. The bacteria import these nucleotides

by an unusual transport system that is found only in a small

number of obligate intracellular bacteria and plant plastids

[23–25]. C. trachomatis has at least two nucleotide transport

proteins (Npts): Npt1 and Npt2 [26]. Npt1 mediates the

import of ATP from the host cell into the bacteria coupled

with the export of ADP. Npt2 catalyzes the uptake of GTP,

UTP, CTP, and ATP, in a proton-dependent manner [26].

These transport systems are found in several Chlamydia
species, Chlamydia-related amoeba symbionts, and

Rickettsia [8,12,26,27�,28,29]. Chlamydia species differ in

their ability to metabolize nucleotides. For instance, C.
muridarum harbors guaAB-add and upp genes whose pre-

dicted products enable ATP to GTP conversion and the
www.sciencedirect.com
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uracil-phosphoribosyl-transferase-mediated biosynthesis

of UTP from uracil, respectively. C. pneumoniae encodes

udk, which may mediate uridine-kinase-dependent syn-

thesis of UTP from uracil, a UMP synthetase (PyrE), and a

nonfunctional guaAB-add operon [11,12]. C. caviae encodes

an intact guaAB-add operon and pyrE [11]. Chlamydia also

lacks the components for NAD+ synthesis, indicating that

this essential molecule must be scavenged from the host as

has been demonstrated in the amoeba symbiont Parachla-
mydia UWE25 [23].

Genomic comparisons reveal that Chlamydia has several

incomplete amino acid biosynthesis pathways [8,10–
12,30]. Not surprisingly, Chlamydia also contains several

amino acid transporters including aat (neutral amino acid

transporter), xasA (amino acid antiporter), brnQ-like

(branched amino acid transporter), and a substantial

number of ABC transporters (at least 13 in C. trachomatis)
that are likely associated with amino acid and oligopep-

tide transport [8,10–12,31]. The regulation of tryptophan

biosynthesis is of particular interest for Chlamydia infec-

tions. Interferon-gamma (IFN-g) secreted by immune

cells activates indoleamine 2,3-dioxygenase, which inhi-

bits chlamydial replication by depleting intracellular

pools of tryptophan [32]. The ability of different Chlamydia
species to synthesize or to acquire tryptophan precursors

correlates with their susceptibility to IFN-g-mediated kill-

ing and is linked to tissue tropism [33–35]. IFN-g inhibits

the replication of C. pneumoniae, C. muridarum, and ocular

strains of C. trachomatis, but has limited effect on genital

strains that contain genes for converting scavenged indole

tryptophan [33]. Indeed, the antichlamydial activity of

IFN-g in human cells can be abrogated in vitro by the

addition of tryptophan to the culture media [35].

Although Chlamydia has several efficient and specialized

uptake systems, these systems are confined to bacterial

membranes. How nutrients cross from the host cytoplasm

through the inclusion membrane, which is not permissive

to the diffusion of molecules >520 Da [36], is largely

unknown.

Co-option of host organelles and trafficking
pathways promote delivery of nutrients to the
inclusion
One potential mechanism for nutrient acquisition may

involve the interception of vesicular transport intermedi-

ates. Even though the chlamydial inclusion is predomi-

nantly segregated from classical endo/lysosomal transport

pathways, it can exploit membrane trafficking events [37–
39,40�,41–44] and host lipases [45] to acquire lipids. The

molecular basis for these events is unclear, but a subset of

Rab GTPases and SNARE proteins, which regulate

membrane trafficking, are recruited to the inclusion

membrane [46–48,49��,50�]. Indeed, recent findings

indicate that interaction with multivesicular bodies

(MVB), the Golgi apparatus, mitochondria, and lipid
www.sciencedirect.com
droplets (LD), are required for optimal chlamydial repli-

cation [51,52,53��,54��,55,56�,57�] and suggest that mem-

brane fusion events between host-derived vesicles and

the inclusion may deliver nutrients to Chlamydia.

Interception of exocytic vesicles

Chlamydia acquires eukaryote-specific lipids [58] from the

host cell. Sphingomyelin and cholesterol are delivered to

the inclusion, and subsequently incorporated into chla-

mydial membranes [43–45,59,60]. Cholesterol and sphin-

gomyelin transport to C. trachomatis are brefeldin A-

sensitive and microtubule-dependent. Since brefeldin

A inhibits anterograde vesicular traffic from the Golgi,

Golgi-derived exocytic vesicles are likely involved in the

delivery of these lipids to the bacteria. Furthermore,

chlamydial protein synthesis is required for sphingomye-

lin uptake, suggesting that co-option of these vesicles is a

bacteria-driven process [59]. The utilization of exocytic

pathways is more pronounced when analyzing Chlamydia
infection of polarized epithelial cells [40�]. In these cells

sphingomyelin, but not glucosylceramide, is retained by

the Chlamydia inclusion and EBs because of preferential

interception of basolaterally trafficked exocytic vesicles.

However, the bulk protein cargo normally present within

Golgi-derived secretory vesicles does not appear to

accumulate in the inclusion, suggesting that a subset of

vesicles may be preferentially targeted. The requirement

of Golgi-derived vesicles for chlamydial replication is

controversial because brefeldin A does not inhibit chla-

mydial replication [43]. However, RNAi screens ident-

ified COPI coat proteins as important for chlamydial

growth [57�,61�]. The exact role of COPI in bacterial

survival, remains to be determined. It is possible that a

subpopulation of brefeldin A-insensitive COPI vesicles

deliver nutrients to the inclusion, or that other COPI-

dependent membrane trafficking events (endosomal sort-

ing, LD biogenesis) are required by Chlamydia. Recently,

the GPI-anchored plasma membrane protein CD59 was

found to traffic to the inclusion in a brefeldin A-insensi-

tive manner, which suggests that Chlamydia also exploits

Golgi-independent pathways to acquire nutrients [62].

Chlamydia-mediated reprogramming of the Golgi

apparatus

The Golgi apparatus processes and sorts newly synthesized

proteins and lipids to their subcellular destinations [63].

Recent findings by Heuer et al. detail the importance of

Golgi architecture in C. trachomatis replication [53��]. At

early stages of infection, Golgi ribbon-like structures of

normal morphology are found closely associated with the

chlamydial inclusion. These structures progressively frag-

ment into ministacks during the course of infection and

fragmentation correlates with the cleavage of the Golgi

protein golgin-84. The processing of golgin-84 is sensitive

to caspase and calpain inhibitors, but it is unclear if secreted

bacterial proteases also contribute to this process. None-

theless, disruption of golgin-84 processing with the caspase
Current Opinion in Microbiology 2010, 13:4–10
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inhibitor, Z-WEHD-FMK, impaired both bacterial repli-

cation and sphingolipid transport into the inclusion. More-

over, when Golgi fragmentation was induced by

knockdown of different Golgi matrix proteins, bacterial

replication was increased. These results demonstrate that

Golgi fragmentation enhances chlamydial replication and

is required for the efficient transport of sphingolipids into

the inclusion.

Recruitment of Rab GTPases and SNARE proteins:

subversion of vesicular trafficking

Rab GTPases are pivotal regulators of membrane traffick-

ing processes and organelle identity [64] and SNARE

proteins are key components of the intracellular mem-

brane fusion machinery [65]. Scidmore and colleagues

were the first to show that a subset of Rab GTPases are

recruited to the inclusion [46]. Rab1, Rab4, and Rab11 are

recruited to inclusions of all chlamydial species tested,

while recruitment of Rab6 is species-specific for C. tra-
chomatis and Rab10 associates with both C. pneumoniae and

C. muridarum. In addition, in RNAi screens several Rabs

have been identified as important factors required for

Chlamydia replication and development [57�,61�]. Recent

observations indicate that this is partially because of the

role of Rab GTPases in remodeling the Golgi apparatus

[54��]. Depletion of Rab6 or Rab11 by RNAi inhibited

Chlamydia-induced Golgi fragmentation despite proces-

sing of golgin-84, suggesting that these Rabs act down-

stream of golgin-84 cleavage. Interestingly, the

impairment of chlamydial replication in Rab6 or Rab11

silenced cells is reversed when Golgi fragmentation is

induced through disruption of the Golgi-tethering protein

p115. These findings provide additional evidence for a

functional link between Golgi fragmentation and chla-

mydial replication.

How Chlamydia mediates recruitment of Rab proteins is

not fully understood. A family of integral inclusion mem-

brane proteins (Incs) are attractive candidates for bac-

terial factors that may facilitate interaction between Rabs

and the inclusion membrane [66]. The C. trachomatis Inc

CT229 interacts with Rab4 [47], and the C. pneumoniae
inclusion membrane protein Cpn0585 interacts with

Rab1, Rab10, and Rab11 [48]. These interactions are

important for bacterial development as ectopic overex-

pression of Cpn0585 in C. pneumoniae-infected cells [48]

or the microinjection of anti-CT229 in C. trachomatis-
infected cells [47] negatively impact bacterial replication.

Like Rab GTPases, a group of SNARE proteins is tar-

geted to the inclusion. Subtil and coworkers determined

that the R-SNAREs Vamp3, Vamp7, and Vamp8 prefer-

entially localize around the inclusion [49��]. Through

bioinformatics and structural modeling, SNARE-like

motifs were identified in at least three C. trachomatis Incs

(IncA, CT813, and CT223) suggesting the potential for

interaction with host SNAREs. IncA interacts with
Current Opinion in Microbiology 2010, 13:4–10
Vamp3, Vamp7, and Vamp8, and SNARE recruitment

to the inclusion is reduced in C. trachomatis isolates

lacking IncA. Furthermore, ectopically expressed

CT813 interacts with Vamp7 and Vamp8 in coimmuno-

precipitation assays. Importantly, the SNARE-like motif

of these proteins was essential for these interactions.

More recently, recombinant IncA was shown to block

SNARE-mediated membrane fusion in an in vitro lipo-

some fusion assay [50�]. These findings lead to the

speculation that Chlamydia subverts host SNARE-

mediated fusion events by expressing inhibitory

SNARE-like proteins [50�].

Modulation of signaling pathways

Chlamydial membranes contain lipid species that are

normally associated with eukaryotic membranes [67].

Using CHO cell lines deficient in various phospholipid

components, the lipid composition of chlamydial mem-

branes was found to closely mimic that of the host [67].

The bacteria modify host-derived glycerophospholipids

by replacing the straight chain fatty acid at the sn2
position with a bacteria-derived branched chain fatty acid

[17]. The sn2 deacylation of phospholipids requires phos-

pholipase A2 (PLA2) activity. Because chlamydial gen-

omes do not encode any obvious PLA2 homologs, it is

speculated that Chlamydia relies on a host PLA2 [45]. In

support of this, pharmacological inhibition of the Ca2+-

dependent cytosolic PLA2 (cPLA2) prevents Chlamydia
uptake of host-derived phospholipids and severely limits

replication [45]. Furthermore, cPLA2 is activated by the

extracellular-signal-regulated map kinase (ERK1/2),

which is fully activated during chlamydial infections

[45]. These results suggest that Chlamydia manipulates

ERK/cPLA2 signaling pathways to facilitate the acqui-

sition of glycerophospholipids. However, this story is

likely more complex than originally proposed, as com-

ponents of these signaling pathways have not been recog-

nized as necessary for infection by RNAi-based screens.

Indeed, we have found through genetic ablation exper-

iments that cPLA2 has an innate immune signaling

function in Chlamydia-infected cells, and that these pro-

cesses vary between host cell species (Vignola M. and

Valdivia R., submitted).

Targeting of endosomal compartments

MVB are a specialized subset of late endosomes involved

in the sorting of cargo proteins and lipids to lysosomes for

degradation [68,69]. By immunofluorescence and immu-

noelectron microscopy, two different MVB markers,

CD63 and MLN64, and the lipid LBPA (lysobispho-

sphatidic acid, highly enriched in intraluminal vesicles

of MVBs) were found in the inclusion lumen. Inhibition

of MVB biogenesis with pharmacological inhibitors or by

exogenous addition of anti-CD63 antibodies impairs chla-

mydial replication and disrupts the traffic of sphingomye-

lin and cholesterol into the inclusion [51,52]. However,

RNAi-mediated silencing of CD63 synthesis does not
www.sciencedirect.com
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prevent MVB interactions with the inclusion [52], and

MVB components have not been identified in the host

genome RNAi screens [57�,61�]. It is likely that Golgi and

MVBs partially overlap in their ability to deliver essential

nutrients to replicating Chlamydia. This would explain

why disruption of individual components of either path-

way is not sufficient to inhibit chlamydial replication.

Co-option of lipid droplets

LD are endoplasmic-reticulum-derived organelles com-

posed of a neutral lipid core surrounded by a phospholipid

monolayer [70]. These lipid storage compartments are

being increasingly recognized as dynamic organelles

involved in multiple biological processes [71]. These
Figure 1

Schematic representation of host cell pathways exploited by Chlamydiae to

infection through the activation of host caspases, calpains, and potentially b

structures in a process mediated by Rab6 and Rab11. These Golgi ministac

necessary for chlamydial uptake of host sphingolipids and replication. Golg

with the inclusion. (b) GPI-anchored plasma membrane protein CD59 is traffi

Infection leads to increased phosphorylation of extracellular signal-regulated

phospholipase A2 (cPLA2). cPLA2 removes straight chain fatty acids from t

phospholipids (Lyso-PL). Chlamydia-derived branched fatty acids (b-FA) are i

(Chl-PL). (d) Chlamydia targets multivesicular bodies (MVB) to sequester req

main store of neutral lipids, are targeted by Chlamydia lipid droplet-associa

recruitment of Rab1, Rab4, and Rab11, whereas Rab6 and Rab10 are recru

Candidate bacterial recruitment factors have been identified (Cpn0585 and C

the inclusion, possibly by chlamydial proteins containing SNARE-like motifs
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organelles proliferate and are recruited to the periphery

of the inclusion during Chlamydia infection [55,56�].
Three chlamydial proteins (Lda1 to Lda3) were ident-

ified as potentially involved in targeting LDs based on

their ability to localize to LDs when expressed exogen-

ously in mammalian cells [55]. Strikingly, LDs enter into

the inclusion lumen [56�]. These observations are signifi-

cant because they demonstrate that intact organelles can

be translocated into the inclusion and that vesicle fusion

is not the only means to deliver potential nutrients into

the inclusion lumen. What role these organelles play in

Chlamydia biology is less clear, although pharmacological

inhibition of neutral lipid biosynthesis, and thus LD

biogenesis, impairs chlamydial development, suggesting
acquire nutrients. (a) Golgin-84 is proteolytically processed during

y bacterial protease(s). This leads to Golgi fragmentation into ribbon-like

ks are recruited around the inclusion. Formation of Golgi ministacks is

i-derived exocytic vesicles containing sphingolipids and cholesterol fuse

cked to the inner face of the inclusion in a Golgi-independent manner. (c)

map kinase (ERK) which, in turn, activates calcium-dependent cytosolic

he sn2 position of host glycerophospholipids to generate lyso-

ncorporated into Lyso-PL to generate Chlamydia-modified phospholipids

uired nutrients like sphingolipids and cholesterol. (e) Lipid droplets, the

ted proteins (Lda) and translocated into the inclusion. (f) Pan-species

ited to C. trachomatis and C. pneumoniae inclusions, respectively.

T229). (g) SNARE proteins Vamp3, Vamp7, and Vamp8 are recruited to

(like IncA and CT813) in the inclusion membrane.
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a function for these organelles in Chlamydia pathogenesis

[55].

Conclusions
In contrast with the numerous trafficking pathways inter-

cepted by Chlamydiae during infection, little is known

about the bacterial factors, which mediate these processes.

The molecular underpinnings of these complex host–
pathogen interactions may be difficult to decipher without

the development of a robust system for mutational analysis

in Chlamydiae. Here we reviewed how some of the most

recent cell biological findings present new potential mech-

anisms for Chlamydia acquisition of nutrients while seques-

tered in an intracellular vacuole (Figure 1). Like many

highly adapted and successful pathogens we predict that

Chlamydia has evolved to tap several redundant mechan-

isms to obtain nutrients. However, it should also be noted

that the host cell is not a passive partner in this interaction

and actively seeks to destroy the microbial invader. There-

fore, the re-routing of membrane and protein transport

events cannot be solely viewed not only as a ‘feeding’

mechanism but also as bacterial countermeasure against

innate immune functions.

Note added in proof
A very recent study characterizing the interactions be-

tween C. trachomatis and host cell sphingolipids [72]

provides evidence that sphingolipid biosynthesis is

required for inclusion membrane stability, homotypic

fusion of inclusions, and proper RB to EB developmental

transition. Moreover, through pharmacological inhibition

of sphingolipid traffic this study shows that both the Golgi

apparatus and MVBs contribute to the delivery of host-

derived lipids to the inclusion.
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